Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis of Aromatic Hyperbranched Polyester (HBPE) and its Use as a Nonmigrating Plasticiser

Lipei Yue A D , Yingjie Cao B C D , Tong Huang A , Lei Huang A , Yongping Bai A E and Yongfeng Zhou B E
+ Author Affiliations
- Author Affiliations

A School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China.

B School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

C Shanghai Shanfu Figure Inkjet Composite Co. Ltd, Shanghai 200240, China.

D These authors contributed equally to this paper.

E Corresponding authors. Email: baifengbai@hit.edu.cn; yfzhou@sjtu.edu.cn




Yongping Bai received his Ph.D. in resin-reinforced composites in 1996 from Harbin Institute of Technology. Since then, he has been working in the same institute as a lecturer, associate professor, and full professor in succession. His main research interests include the synthesis, modification, and processing of polymeric materials, especially polymer films.



Yongfeng Zhou obtained his Ph.D. in polymer chemistry and physics in 2005 from Shanghai Jiao Tong University. He has since worked there as a lecturer (2005), associate professor (2006), and full professor (2010). His current research interests include the controllable synthesis, self-assembly, and cytomimetic applications of block copolymers, especially hyperbranched-based polymers.

Australian Journal of Chemistry 67(1) 22-30 https://doi.org/10.1071/CH13195
Submitted: 22 April 2013  Accepted: 21 May 2013   Published: 11 June 2013

Abstract

A series of aromatic hyperbranched polyesters (HBPEs) were synthesised through one-pot reaction of benzene-1,2,4-tricarboxylic anhydride, diethylene glycol, and methanol. The molecular structure of HBPEs was characterised by 1H-NMR, Fourier transform infrared spectroscopy, gel permeation chromatography, differential scanning calorimetry (DSC), and thermogravimetric analysis. HBPE was used as plasticiser for poly(vinyl chloride) (PVC), and compared with traditional plasticiser bis(2-ethylhexyl) phthalate (DOP). When the plasticiser concentration in PVC was below 40 wt-%, HBPE showed better plasticisation efficiency than DOP, with enhanced impact strength and ultimate elongation. Volatility and extractability tests for PVC films indicated that there was no migration if HBPE was used as plasticiser, even under very harsh conditions, while the migration in PVC films plasticised by DOP was much greater, indicating that HBPE could be used as a substitution for DOP to lower the potential health risk from migrating phthalates during the use of PVC products.


References

[1]  A. H. Tullo, Chem. Eng. News 2005, 83, 29.

[2]  M. T. Benaniba, M. N. Valérie, J. Appl. Polym. Sci. 2010, 118, 3499.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSntLbK&md5=16c6e73735e3b11e740b2d1d1c3dbb08CAS |

[3]  S. W. Kim, J. G. Kim, J. I. Choi, I. R. Jeon, K. H. Seo, J. Appl. Polym. Sci. 2005, 96, 1374.

[4]  V. Ambrogi, W. Brostow, C. Carfagna, M. Pannico, P. Persico, Polym. Eng. Sci. 2012, 52, 211.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXps1eltLg%3D&md5=df7e69222a05ba46fae6d58e6e64d386CAS |

[5]  R. Navarro, M. P. Perrino, M. G. Tardajos, H. Reinecke, Macromolecules 2010, 43, 2377.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXot1OisA%3D%3D&md5=c03a126f484b4a4b45e6a21e04eab74cCAS |

[6]  R. Braslau, F. Schäffner, A. Earla, J. Polym. Sci., A: Polym. Chem. 2013, 51, 1175.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVCktLnI&md5=3f6b4b778a6418a4b72b4213b2f38e97CAS |

[7]  M. Rahman, C. S. Brazel, Prog. Polym. Sci. 2004, 29, 1223.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXps1OksLs%3D&md5=d77461241ac5c5b2d7de3bd7c90a9b35CAS |

[8]  C. S. Giam, H. S. Chan, G. S. Neff, E. L. Atlas, Science 1978, 199, 419.
         | 1:CAS:528:DyaE1cXhtFShsbc%3D&md5=9e6b635a070e0033cbfcc38350cdb627CAS | 413194PubMed |

[9]  J. L. Lyche, A. C. Gutleb, A. Bergman, G. S. Eriksen, A. J. Murk, E. Ropstad, M. Saunders, J. U. Skaare, J. Toxicol. Environ. Health B. 2009, 12, 225.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2qsb%2FM&md5=a6196ea43479fa1cff076f13b3623c7bCAS |

[10]  M. Hakkarainen, Adv. Polym. Sci. 2008, 211, 159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsFKquro%3D&md5=93c15e0a4f44bf05ccce4a59e45dd6e4CAS |

[11]  E. Diamanti-Kandarakis, J. P. Bourguignon, L. C. Giudice, R. Hauser, G. S. Prins, A. M. Soto, R. T. Zoeller, A. C. Gore, Endocr. Rev. 2009, 30, 293.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVejt74%3D&md5=cdde89e9f06cfc6f52715718099cd6bfCAS | 19502515PubMed |

[12]  J. Sacristán, C. Mijangos, H. Reinecke, S. Spells, J. Yarwood, Macromolecules 2000, 33, 6134.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  N. N. Reddy, Y. M. Mohan, K. Varaprasad, S. Ravindra, K. Vimala, K. M. Raju, J. Appl. Polym. Sci. 2010, 115, 1589.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVersbfL&md5=955bdaae3b7928c951fdaaf446000cf8CAS |

[14]  K. Jayakrishnan, S. Lakshmi, Nature 1998, 396, 638.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisVWlsQ%3D%3D&md5=064c9e2d8d4446248367f4fd7c590d37CAS |

[15]  Y. M. Ren, G. F. Wu, X. X. Zhao, X. L. Liu, F. Q. Liu, J. Appl. Polym. Sci. 2010, 118, 3416.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSntLnK&md5=0d70f144ff3f9cbaa84e6dc75cb083f7CAS |

[16]  P. Ferruti, I. Mancin, E. Ranucci, C. D. Felice, G. Latina, M. Laus, Biomacromolecules 2003, 4, 181.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVCjtA%3D%3D&md5=0abdf4df1931020e7cd8c37e892aab66CAS | 12523864PubMed |

[17]  P. J. Flory, J. Am. Chem. Soc. 1952, 74, 2718.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38Xls1ertQ%3D%3D&md5=ec38446f56c565ee551dbb1443e22b0eCAS |

[18]  P. J. Flory, Principles in Polymer Chemistry 1953 (Cornell University Press: Ithaca, NY).

[19]  C. Gao, D. Y. Yan, Prog. Polym. Sci. 2004, 29, 183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1CrsL8%3D&md5=23bec761c2bdd4b306d867dfd9092273CAS |

[20]  D. Y. Yan, C. Gao, H. Frey, Hyperbranched Polymers 2011 (John Wiley & Sons, Inc.: Hoboken, NJ).

[21]  B. I. Voit, J. Polym. Sci., A: Polym. Chem. 2000, 38, 2505.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkt1aqsbY%3D&md5=e9122526a982c67ffd1ca9a67a7c421dCAS |

[22]  B. I. Voit, A. Lederer, Chem. Rev. 2009, 109, 5924.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2lurjP&md5=c91598501c11c7ab297516fa2a985cf1CAS | 19785454PubMed |

[23]  B. I. Voit, J. Polym. Sci., A: Polym. Chem. 2005, 43, 2679.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1Gkurw%3D&md5=48fa346d0bd3a50d7ccd7111ec2c32a2CAS |

[24]  A. Carlmark, C. Hawker, A. Hult, M. Malkoch, Chem. Soc. Rev. 2009, 38, 352.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVSntLw%3D&md5=4a9e8782fb38d30500831a03b18e3eb4CAS | 19169453PubMed |

[25]  D. Wilms, S. E. Stiriba, H. Frey, Acc. Chem. Res. 2010, 43, 129.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFynsb7O&md5=6a304010e6434f70f7efb7e03295e6b5CAS | 19785402PubMed |

[26]  B. I. Voit, C. R. Chim. 2003, 6, 821.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXoslOgsbo%3D&md5=1890171efb88aaa9bcc5bbfee0e551f5CAS |

[27]  E. Burakowska, J. R. Quinn, S. C. Zimmerman, R. Haag, J. Am. Chem. Soc. 2009, 131, 10574.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFKmtrc%3D&md5=3fb0f16d1dab58832ffd05f6bccd09f2CAS | 19722631PubMed |

[28]  R. Haag, Chem. – Eur. J. 2001, 7, 327.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXoslWruw%3D%3D&md5=9b98bbe84eb853d98ead502d8d5b9a7cCAS | 11271517PubMed |

[29]  F. Zhan, A. Asif, J. H. Liu, H. L. Wang, W. F. Shi, Polymer 2010, 51, 3402.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVGmurY%3D&md5=ea86d0d7f3ad117a1cba9d3144822051CAS |

[30]  R. L. Xu, H. W. Liu, S. Y. Liu, Y. S. Li, W. F. Shi, J. Appl. Polym. Sci. 2008, 107, 1857.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOqt7%2FL&md5=a5a2711165339699a07dbf702da1556dCAS |

[31]  Z. H. Ge, H. Liu, Y. F. Zhang, S. Y. Liu, Macromol. Rapid Commun. 2011, 32, 68.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Wqu7zJ&md5=6f93e2f79a18c5cb6ca7cbde8fc78c34CAS |

[32]  Y. L. Zheng, L. Zhong, W. Huang, Y. F. Zhou, D. Y. Yan, J. Polym. Sci., A: Polym. Chem. 2010, 48, 4428.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGgsbfJ&md5=a6c58f164b9189392f9e6b47c895af5fCAS |

[33]  Y. F. Zhou, D. Y. Yan, Sci. China: Chem. 2010, 53, 2407.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  H. B. Jin, W. Huang, X. Y. Zhu, Y. F. Zhou, D. Y. Yan, Chem. Soc. Rev. 2012, 41, 5986.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1aqsbjM&md5=37e6753cbc4cb98331f646f7217988a4CAS |

[35]  Y. F. Zhou, W. Huang, J. Y. Liu, X. Y. Zhu, D. Y. Yan, Adv. Mater. 2010, 22, 4567.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlaksbzI&md5=ae94e189fc368674371ef0de3a8a43edCAS |

[36]  Y. F. Zhou, D. Y. Yan, Chem. Commun. 2009, 1172.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  K. T. Powell, C. Cheng, K. L. Wooley, A. Singh, M. W. Urban, J. Polym. Sci., A: Polym. Chem. 2006, 44, 4782.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xotlejtrw%3D&md5=c1904589e965214b9e13c7d549dea7e5CAS |

[38]  D. Gan, A. Mueller, K. L. Wooley, J. Polym. Sci., A: Polym. Chem. 2003, 41, 3531.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFKmsrk%3D&md5=992dc384508a51bc56f0148c48514e6fCAS |

[39]  C. S. Gudipati, C. M. Greenlief, J. A. Johnson, P. Prayongpan, K. L. Wooley, J. Polym. Sci., A: Polym. Chem. 2004, 42, 6193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVyitbrN&md5=21e52dcadbdeebf540baefeab0b1df10CAS |

[40]  D. Foix, X. Ramis, M. Sangermano, A. Serra, J. Polym. Sci., A: Polym. Chem. 2012, 50, 1133.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ChsrnE&md5=d598bc6e7c138676d01a534126a4e89eCAS |

[41]  M. Morell, D. Foix, A. Lederer, X. Ramis, B. I. Voit, A. Serra, J. Polym. Sci., A: Polym. Chem. 2011, 49, 4639.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVCqt7vJ&md5=04f232fe27b944a8d3f39a9c8987825cCAS |

[42]  M. Morell, A. Lederer, X. Ramis, B. I. Voit, A. Serra, J. Polym. Sci., A: Polym. Chem. 2011, 49, 2395.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvFGgsbc%3D&md5=94ac9b64f6043b680e488afec4acf856CAS |

[43]  J. Borah, N. Karak, J. Appl. Polym. Sci. 2007, 104, 648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlWgurk%3D&md5=26750c27d77ae17bbd1d9a548ec8ab48CAS |

[44]  B. M. Tande, N. J. Wagner, Y. H. Kim, J. Polym. Sci., B: Polym. Phys. 2007, 45, 1970.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotVyqu7k%3D&md5=6764123746a5f0b426e223b62b0f12b6CAS |

[45]  J. Choi, S. Y. Kwak, Environ. Sci. Technol. 2007, 41, 3763.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1Orsb4%3D&md5=981ab22a649d102c8d7ccf4d7ed9c34aCAS | 17547210PubMed |

[46]  S. Y. Kwak, J. Choi, U. S. Patent 6 747 092 B2 2004.

[47]  J. Choi, S. Y. Kwak, Abstr. Pap. Am. Chem. Soc. 2004, 227, U531.

[48]  D. H. Bolton, K. L. Wooley, J. Polym. Sci., A: Polym. Chem. 2002, 40, 823.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xitl2ht7w%3D&md5=361763558476b83948e705103123d499CAS |

[49]  C. J. Hawker, R. Lee, J. M. J. Frechet, J. Am. Chem. Soc. 1991, 113, 4583.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXisVOru78%3D&md5=8a97910ddb48a3d5b0c5178b648c1adbCAS |