Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Electrochromic π-Conjugated Copolymers Derived from Azulene, Fluorene, and Dialkyloxybenzothiadiazole

Shaun Zhi Hao Lim A B , Wei Teng Neo A , Ching Mui Cho A , Xiaobai Wang A , Angeline Yan Xuan Tan A , Hardy Sze On Chan B and Jianwei Xu A C
+ Author Affiliations
- Author Affiliations

A Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 3 Research Link, Singapore 11760.

B Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543.

C Corresponding author. Email: jw-xu@imre.a-star.edu.sg

Australian Journal of Chemistry 66(9) 1048-1056 https://doi.org/10.1071/CH13147
Submitted: 5 April 2013  Accepted: 17 July 2013   Published: 6 August 2013

Abstract

A series of random π-conjugated copolymers P1, P2, and P3 were synthesised from 1,3-dibromoazulene, 4,7-dibromo-5,6-bis(dodecyloxy)benzo-2,1,3-thiadiazole, and 9,9-dioctylfluorene-2,7-bis(trimethyleneborate) via Suzuki coupling reactions. The copolymers P1–3 had molecular weights in the range of 17000–30900 g mol–1 with polydispersity indexes of 1.45–2.03. Thermal analysis showed that the polymers P1–3 had good thermal stability with decomposition temperatures ranging from 341 – 363°C both in air and in nitrogen. Photoluminescence studies showed that polymer P1 and P2 are weakly fluorescent with low quantum yields of 0.013 and 0.0029 for P1 borne with 30 % azulene and P2 borne with 50 % azulene in the polymer backbone, respectively. P3 borne with 70 % azulene resulted in complete quenching of fluorescence. The electrochemical band gaps for P13 are very close to their corresponding optical band gaps. Electrochromic study showed that three polymer thin films displayed the same colour change from yellowish green at the neutral and electrochemically-reduced state to greyish brown at the electrochemically-oxidised state. In particular, electrochromic contrasts of 17 % and 13 % for P2 and P3, respectively, were recorded in the near infrared region.


References

[1]  A. C. Grimsdale, K. L. Chan, R. E. Martin, P. G. Jokisz, A. B. Holmes, Chem. Rev. 2009, 109, 897.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1emu7o%3D&md5=7c1936ffab594240cb1810f0c61cb383CAS | 19228015PubMed |

[2]  A. C. Arias, J. D. MacKenzie, I. McCulloch, J. Rivnay, A. Salleo, Chem. Rev. 2010, 110, 3.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivFOitQ%3D%3D&md5=cae651d7f156814736afdfc79d4c18d6CAS | 20070114PubMed |

[3]  Y. J. Cheng, S. H. Yang, C. S. Hsu, Chem. Rev. 2009, 109, 5868.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2ltb3M&md5=e77708ca829d2dd8826a8f48feb7a0faCAS | 19785455PubMed |

[4]  A. A. Argun, P. H. Aubert, B. C. Thompson, I. Schwendeman, C. L. Gaupp, J. Hwang, N. J. Pinto, D. B. Tanner, A. G. MacDiarmid, J. R. Reynolds, Chem. Mater. 2004, 16, 4401.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslKrs70%3D&md5=01c810f1afd6aa415245b1730636d26eCAS |

[5]  P. M. Beaujuge, J. R. Reynolds, Chem. Rev. 2010, 110, 268.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivFKrug%3D%3D&md5=051ae15095787f9aa80aef9fff539264CAS | 20070115PubMed |

[6]  S. K. Deb, Appl. Opt. 1969, 8, 192.
         | 20076124PubMed |

[7]  R. M. Paul Monk, D. Rosseinsky, Electrochromism and Electrochromic Devices 2007 (Cambridge University Press: Cambridge).

[8]  P. M. Beaujuge, S. Ellinger, J. R. Reynolds, Nat. Mater. 2008, 7, 795.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFGhs7vK&md5=bfce3301e236ae68a7b015a5ad163855CAS | 18758455PubMed |

[9]  (a) C. M. Amb, A. L. Dyer, J. R. Reynolds, Chem. Mater. 2011, 23, 397.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSisbjI&md5=0ea72183aad2387448cf146fb72c9fb3CAS |
      (b) P. Shi, C. M. Amb, E. P. Knott, E. J. Thompson, D. Y. Liu, J. Mei, A. L. Dyer, J. R. Reynolds, Adv. Mater. 2010, 22, 4949.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. L. Dyer, E. J. Thompson, J. R. Reynolds, ACS Appl. Mater. Interfaces 2011, 3, 1787.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) E. Bundgaard, F. C. Krebs, Macromolecules 2006, 39, 2823.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisFWjtL8%3D&md5=42d3376a09b61c1fb175b74719dcf010CAS |
      (b) O. Atwani, C. Baristiran, A. Erden, G. Sonmez, Synth. Met. 2008, 158, 83.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Subbiah, P. M. Beaujuge, K. R. Choudhury, S. Ellinger, J. R. Reynolds, F. So, ACS Appl. Mater. Interfaces 2009, 1, 1154.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) T. L. Wang, A. C. Yeh, C. H. Yang, Y. T. Shieh, W. J. Chen, T. H. Ho, Sol. Energy Mater. Sol. Cells 2011, 95, 3295.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  F. Wang, Y. H. Lai, Macromolecules 2003, 36, 536.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlalug%3D%3D&md5=76541c226d443ead22a042b6514e7e3fCAS |

[12]  L. Jönsson, Acta Chem. Scand. A 1981, 35b, 683.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) W. C. Neikam, M. M. Desmond, J. Am. Chem. Soc. 1964, 86, 4811.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXis1Gj&md5=ad5cb9768504bfb4f705aa68bab6bb92CAS |
      (b) R. J. Waltman, J. Bargon, Can. J. Chem. 1986, 64, 76.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) G. Tourillon, F. Garnier, J. Electroanal. Chem. 1982, 135, 173.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xktl2ls70%3D&md5=1818214362898ddab77eec9b6fc03fb3CAS |
      (b) M. Iyoda, K. Sato, M. Oda, Tetrahedron Lett. 1985, 26, 3829.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. J. Waltman, J. Bargon, Can. J. Chem. 1986, 64, 76.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) K. G. Neoh, E. T. Kang, T. C. Tang, Polym. Bull. 1988, 19, 325.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) J. Daub, M. Feuerer, A. Mirlach, J. Salbeck, Synth. Met. 1991, 42, 1551.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) W. Schuhmann, J. Huber, A. Mirlach, J. Daub, Adv. Mater. 1993, 5, 124.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) M. Porsch, G. Sigl-Seifert, J. Daub, Adv. Mater. 1997, 9, 635.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) F. X. Redl, O. Köthe, K. Röckl, W. Bauer, J. Daub, Macromol. Chem. Phys. 2000, 201, 2091.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) F. Wang, Y. H. Lai, N. M. Kocherginsky, Y. Y. Koteski, Org. Lett. 2003, 5, 995.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) B. Meana-Esteban, C. Lete, C. Kvarnstroem, A. Ivaska, J. Phys. Chem. B 2006, 110, 23343.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) G. Nie, T. Cai, S. Zhang, J. Hou, J. Xu, X. Han, Mater. Lett. 2007, 61, 3079.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) S. E. Estdale, R. Brettle, D. A. Dummur, C. M. Marson, J. Mater. Chem. 1997, 7, 391.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvFeksLY%3D&md5=f08e351fd2dffb7bbac4945f91c40396CAS |
      (b) F. Wang, Y. H. Lai, Macromolecules 2003, 36, 536.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) F. Wang, Y. H. Lai, M. Han, Org. Lett. 2003, 5, 4791.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Z. Hussain, H. Hopf, L. Pohl, T. Oeser, A. K. Fischer, P. G. Jones, Eur. J. Org. Chem. 2006, 5555.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) X. Wang, J. K. Ng, P. Jia, T. Lin, C. M. Cho, J. Xu, X. Lu, C. He, Macromolecules 2009, 42, 5534.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) M. Murai, E. Amir, R. J. Amir, C. J. Hawker, Chem. Sci. 2012, 3, 2721.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  J. Bouffard, T. M. Swager, Macromolecules 2008, 41, 5559.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVeju70%3D&md5=78ab96a869b1f718109155661ad8b399CAS |

[17]  A. N. Fletcher, Photochem. Photobiol. 1969, 9, 439.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXktlCrsLw%3D&md5=e55e7176a6d3a21f352e7566eaba2172CAS | 5771430PubMed |

[18]  (a) C. J. Cooksey, J. L. Courtneidge, A. G. Davies, P. S. Gregory, J. C. Evans, C. C. Rowlands, J. Chem. Soc., Perkin Trans. 2 1988, 807.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXntlej&md5=44d6bdc0adf4a49b6e8db67c26a1133bCAS |
      (b) F. Gerson, M. Scholz, H. J. Hansen, P. Uebelhart, J. Chem. Soc., Perkin Trans. 2 1995, 215.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  B. Liu, W. L. Yu, Y. H. Lai, W. Huang, Chem. Mater. 2001, 13, 1984.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVCmtbc%3D&md5=a2dfcc7466c583c19283a5bccc205c0eCAS |

[20]  H. Yi, S. Al-Faifi, A. Iraqi, D. C. Watters, J. Kingsley, D. G. Lidzey, J. Mater. Chem. 2011, 21, 13649.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVKhur7P&md5=db6e04786cd4c0ce0b3322a84249d1f8CAS |