Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Computational Evaluation of the Sulfonyl Radical as a Universal Leaving Group for RAFT Polymerisation*

Ganna Gryn’ova A , Tamaz Guliashvili B D , Krzysztof Matyjaszewski C and Michelle L. Coote A D
+ Author Affiliations
- Author Affiliations

A Australian Research Council Centre of Excellence for Free Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.

B General Electric Power and Water, Water and Process Technologies, 4636 Somerton Road, Trevose, PA 19053, USA.

C Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.

D Corresponding authors. Email: tamazguliasvili@yahoo.com; mcoote@rsc.anu.edu.au

Australian Journal of Chemistry 66(3) 308-313 https://doi.org/10.1071/CH12452
Submitted: 1 October 2012  Accepted: 31 October 2012   Published: 17 December 2012

Abstract

The present study investigates the performance of the sulfonyl radical, i.e. SO2Ph, as a universal leaving group in reversible addition–fragmentation chain-transfer (RAFT) polymerisation. The sulfonyl radical is widely used as a radical initiator and has already been proved successful as a leaving group in an atom-transfer radical polymerisation. Our results, obtained using high-level ab initio computational methodology under relevant experimental conditions, indicate superior performance of the sulfonyl compared with a reference cyanoisopropyl group in controlling RAFT of a wide range of monomers. Importantly, the presence of sulfonyl chain ends in the polymers so formed opens attractive possibilities for further functionalisation. Potential synthetic routes to the R-sulfonyl RAFT agents are discussed.


References

[1]  W. A. Braunecker, K. Matyjaszewski, Prog. Polym. Sci. 2007, 32, 93.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFKmt7s%3D&md5=aa982f7314d46dfa06ebff5f5279465cCAS |

[2]  For a review, see: C. J. Hawker, A. W. Bosman, E. Harth, Chem. Rev. 2001, 101, 3661.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslaqsrc%3D&md5=f526c4187293bb403eb06f2cb420f495CAS |

[3]  For a review, see: N. V. Tsarevsky, K. Matyjaszewski, Chem. Rev. 2007, 107, 2270.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvVelsrk%3D&md5=d1dc207d7086d5253684c2e0a780170cCAS |

[4]  For a review, see: G. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem. 2009, 62, 1402.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVers7bN&md5=fb2b73394696eb457b81af596f1722b8CAS |

[5]  (a) For specific structure–reactivity studies of ATRP, NMP, and RAFT respectively, see for example: W. Tang, Y. Kwak, W. Braunecker, N. V. Tsarevsky, M. L. Coote, K. Matyjaszewski, J. Am. Chem. Soc. 2008, 130, 10702.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXos12qs7o%3D&md5=c02b2c83c38c9283a8df4ba5d253caabCAS |
      (b) J. L. Hodgson, C. Y. Lin, M. L. Coote, S. R. A. Marque, K. Matyjaszewski, Macromolecules 2010, 43, 3728.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. L. Coote, E. H. Krenske, E. I. Izgorodina, Macromol. Rapid Commun. 2006, 27, 473.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) M. L. Coote, D. J. Henry, Macromolecules 2005, 38, 5774.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksFeru7k%3D&md5=32b00659ac824b130c0bd3802ef06bd3CAS |
      (b) A. Theis, M. H. Stenzel, T. P. Davis, M. L. Coote, C. Barner-Kowollik, Aust. J. Chem. 2005, 58, 437.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  M. Benaglia, J. Chiefari, Y. K. Chong, G. Moad, E. Rizzardo, S. H. Thang, J. Am. Chem. Soc. 2009, 131, 6914.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFOlsr4%3D&md5=b20f45aece9d3de513ad7f0d683d45e4CAS |

[8]  J. B. McLeary, F. M. Calitz, J. M. McKenzie, M. P. Tonge, R. D. Sanderson, B. Klumperman, Macromolecules 2004, 37, 2383.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslCqurk%3D&md5=4b486d9ed8570e2c89f370f6a7060753CAS |

[9]  C. Y. Lin, S. R. A. Marque, K. Matyjaszewski, M. L. Coote, Macromolecules 2011, 44, 7568.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFCmtbzI&md5=ef8d8684dda31bee8c3947ece04e6711CAS |

[10]  M. L. Coote, D. J. Henry, Macromolecules 2005, 38, 1415.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXms12qug%3D%3D&md5=2d8d83172e48892d79442da9138be9f4CAS |

[11]  V. Percec, B. Barboiu, H.-J. Kim, J. Am. Chem. Soc. 1998, 120, 305.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlt1Whug%3D%3D&md5=cc3f334f97f26dc7b2a6104ca47d5792CAS |

[12]  V. Percec, B. Barboiu, Macromolecules 1995, 28, 7970.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXos1yit70%3D&md5=ce65ec2bea5317f4861caf4fda0920e9CAS |

[13]  Y.-R. Luo, Handbook of Bond Dissociation Energies in Organic Compounds 2003 (CRC Press: Boca Raton, FL).

[14]  M. S. Kharasch, A. F. Zavist, J. Am. Chem. Soc. 1951, 73, 964.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3MXks1ygug%3D%3D&md5=e72523318a9ab08afdd71beb19aa47adCAS |

[15]  M. Asscher, D. Vofsi, J. Chem. Soc. 1964, 1964, 4962.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  A. Orochov, M. Asscher, D. Vofsi, J. Chem. Soc. Perkin Trans II 1972, II, 1000.

[17]  M. Matsuyama, M. Kamigaito, M. Sawamoto, J. Polym. Sci. A Polym. Chem. 1996, 34, 3585.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  T. Grimaud, K. Matyjaszewski, Macromolecules 1997, 30, 2216.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvVOiur4%3D&md5=1f658671551f4ba93537624341b48eb3CAS |

[19]  B. Barboiu, V. Percec, Macromolecules 2001, 34, 8626.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslaqsLk%3D&md5=a771667419b97d89c5fe9f99e412eda1CAS |

[20]  (a) Relative rates can be found in Y. Takahara, M. Iino, M. Matsuda, Bull. Chem. Soc. Jpn. 1976, 49, 2268.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXkt1Oguw%3D%3D&md5=6725fcb36f314e99d4f2140d3e2a8f5fCAS |
      (b) For the absolute rates of reverse reactions, see V. I. Timokhin, S. Gastaldi, M. P. Bertrand, C. Chatgilialoglu, J. Org. Chem. 2003, 68, 3532.For the absolute rates of reverse reactions, see
         | Crossref | GoogleScholarGoogle Scholar |

[21]  (a) A. Kirschning, H. Monenschein, R. Wittenberg, Angew. Chem. Int. Ed. 2001, 40, 650.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs12qtrw%3D&md5=a6511622b21e6f71c8c91ea790fe4964CAS |
      (b) M. Mentel, A. M. Schmidt, M. Gorray, P. Eilbracht, R. Breinbauer, Angew. Chem. Int. Ed. 2009, 48, 5841.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision B.01 2009 (Gaussian, Inc.: Wallingford, CT).

[23]  MOLPRO, Version 2009.1 is a package of ab initio programs written by H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schütz, P. Celani, T. Korona, A. Mitrushenkov, G. Rauhut, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, G. Hetzer, T. Hrenar, G. Knizia, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklaß, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, U. Schumann, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, A. Wolf, MOLPRO, Version 2009.1.

[24]     (a) Q-Chem Version 3.2 2007 (Q-Chem, Inc.: Pittsburgh, PA).
      (b) Y. Shao, L. Fusti-Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O’Neill, R. A. Distasio, R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. Van Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock, Y. Shao, L. Fusti-Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O’Neill, R. A. Distasio, R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. Van Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock, Y. Shao, L. Fusti-Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O’Neill, R. A. Distasio, R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. Van Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock, Phys. Chem. Chem. Phys. 2006, 8, 3172.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  ADF2010 02, E. J. Baerends, T. Ziegler, J. Autschbach, D. Bashford, A. Bérces, F.M. Bickelhaupt, C. Bo, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, D. E. Ellis, M. van Faassen, L. Fan, T. H. Fischer, C. Fonseca Guerra, A. Ghysels, A. Giammona, S. J. A. van Gisbergen, A. W. Götz, J. A. Groeneveld, O. V. Gritsenko, M. Grüning, S. Gusarov, F. E. Harris, P. van den Hoek, C. R. Jacob, H. Jacobsen, L. Jensen, J. W. Kaminski, G. van Kessel, F. Kootstra, A. Kovalenko, M. V. Krykunov, E. van Lenthe, D. A. McCormack, A. Michalak, M. Mitoraj, J. Neugebauer, V. P. Nicu, L. Noodleman, V. P. Osinga, S. Patchkovskii, P. H. T. Philipsen, D. Post, C. C. Pye, W. Ravenek, J. I. Rodríguez, P. Ros, P. R. T. Schipper, G. Schreckenbach, J. S. Seldenthuis, M. Seth, J. G. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T. A. Wesolowski, E. M. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, A. L. Yakovlev; (SCM, Theoretical Chemistry, Vrije Universiteit: Amsterdam, the Netherlands). Available at: http://www.scm.com

[26]  E. I. Izgorodina, C. Y. Lin, M. L. Coote, Phys. Chem. Chem. Phys. 2007, 9, 2507.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltleisLg%3D&md5=a53c67a9ddcca042eb0a910aec44d4ddCAS |

[27]  J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVynurc%3D&md5=7a06382f45d589916740c227ec0fea33CAS |

[28]  A scaling factor of 1.3 was adopted; additionally, radii of aromatic carbon atoms were set equal to 1.30 Å. For details, see T. Brinck, A. G. Larsen, K. M. Madsen, K. Daasbjerg, J. Phys. Chem. B 2000, 104, 9887.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmvFaqsbo%3D&md5=0b539985ca8b710632f8669eef17e897CAS |

[29]  Scaling factors of the M052X/6–31G(d) method were adopted; for details, see J. P. Merrick, D. Moran, L. Radom, J. Phys. Chem. A 2007, 111, 11683.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFOrs77F&md5=c68e3f2d310591b41b1ede9f9c9bcb3fCAS |

[30]  (a) Contribution of dispersion to the free energies of reactions R + S=C(SCH3)S–P → RS–C(SCH3)S–P was found to be 12–20 kJ mol–1 larger for the phenylsulfonyl R-group compared with cyanoisopropyl; calculated using DFT-D3 code with BJ-damping; see S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
      (b) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  D. J. Henry, M. B. Sullivan, L. Radom, J. Chem. Phys. 2003, 118, 4849.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1ensL0%3D&md5=cf2641be09d8aa0de06d60a9faee412bCAS |

[32]  J. I. Steinfeld, J. S. Francisco, W. L. Hase, Chemical Kinetics and Dynamics 1989 (Prentice Hall: Englewood Cliffs, NJ).

[33]  (a) A. Klamt, J. Phys. Chem. 1995, 99, 2224.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjsFaisb0%3D&md5=53ecbd1ff68929cde098489845db910dCAS |
         (b) A. Klamt, COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design 2005 (Elsevier Science Ltd: Amsterdam).
      (c) A. Klamt, V. Jonas, T. Burger, J. C. W. Lohrenz, J. Phys. Chem. A 1998, 102, 5074.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  C. C. Pye, T. Ziegler, E. van Lenthe, J. N. Louwen, Can. J. Chem. 2009, 87, 790.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1Ggu7g%3D&md5=0993f40cd49dd063b26eaebfcfc89705CAS |

[35]  E. H. Krenske, E. I. Izgorodina, M. L. Coote, in Controlled/Living Radical Polymerization: From Synthesis to Materials (Ed. K. Matyjaszewski) ACS Symp. Ser. 2006, 944, 406.

[36]  (a) M. L. Coote, Macromolecules 2004, 37, 5023..
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. L. Coote, J. Phys. Chem. A 2005, 109, 1230.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  C. Y. Lin, M. L. Coote, Aust. J. Chem. 2011, 64, 747.
         | 1:CAS:528:DC%2BC3MXotFOqu70%3D&md5=706091fdb46c5c8cbe634b2ffa094737CAS |

[38]  Y. Kwak, R. Nicolay, K. Matyjaszewski, Macromolecules 2009, 42, 3738.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVSksr0%3D&md5=b9b8a7cb01c66705f8fd0f7396728b90CAS |

[39]  N. Aoyagyi, T. Endo, J. Polym. Sci. A Polym. Chem. 2009, 47, 3702.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  A. Theis, M. H. Stenzel, T. P. Davis, M. L. Coote, C. Barner- Kowollik, Aust. J. Chem. 2005, 58, 437.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFymsLw%3D&md5=b50c4b2adc997014ab84d60856af4914CAS |