Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Computer-Aided Molecular Design of Ionic Liquids: An Overview

Derick C. Weis A and Douglas R. MacFarlane A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

B Corresponding author. Email: douglas.macfarlane@monash.edu




Derick C. Weis completed his Ph.D. entitled ‘Cheminformatic Applications with the Signature Molecular Descriptor: Virtual Screening and Computer-Aided Molecular Design’ in 2010 at Tennessee Technological University. He is currently a research fellow in the Monash Ionic Liquids Group at Monash University supported by the U.S. National Science Foundation International Research Fellowship Program. His current research interests include using computer-aided molecular design to predict physical properties for ionic liquids.



Professor Doug MacFarlane is currently an Australian Research Council Federation Fellow at Monash University and leads the Monash Ionic Liquids Group. He will take up an Australian Laureate Fellowship in early 2013. He is also the program leader of the Energy Program in the Australian Centre for Electromaterials Science. He was a Ph.D. graduate of Purdue University in 1982 and after post-doctoral work at Victoria University, Wellington, took up a faculty position at Monash. Professor MacFarlane was elected to the Australian Academy of Sciences in 2007 and to the Australian Academy of Technological Sciences and Engineering in 2009. His research interests include the chemistry and properties of ionic liquids and solids, and their application in a wide range of technologies from electrochemical (batteries, fuel cells, solar cells, and corrosion prevention) to biotechnology (drug ionic liquids and protein stabilisation) and biofuel processing. He is an Adjunct Professor of the University of Alabama, an International Fellow of the Queens University Ionic Liquid Laboratory, Belfast, and a Visiting Professor of the Chinese Academy of Science.

Australian Journal of Chemistry 65(11) 1478-1486 https://doi.org/10.1071/CH12344
Submitted: 19 July 2012  Accepted: 22 August 2012   Published: 2 October 2012

Abstract

Computer-aided molecular design (CAMD) is a technique that helps select potential target molecules that will have desired properties before synthesis and testing in the laboratory, and provides an excellent complement to the chemical intuition possessed by experimentalists. Property predictions are obtained from a quantitative structure–property relationship (QSPR) that links changes at the molecular structure level to differences in the macroscopic properties. Ionic liquids (ILs) offer an excellent opportunity for the application of CAMD because of the numerous possible combinations of cations and anions available to fine-tune physical properties. In addition, there are many innovative applications of ILs where CAMD could make an impact. In this overview, we present the general methodology for CAMD with QSPR, and describe recent progress in this area related to ILs.


References

[1]  An Introduction to Ionic Liquids (Ed. M. Freemantle) 2010 (Royal Society of Chemistry: Cambridge, UK).

[2]  S. A. Chowdhury, R. Vijayaraghavan, D. R. MacFarlane, Green Chem. 2010, 12, 1023.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVyiurw%3D&md5=8fc3bf32a209cbfb625780111096d54dCAS |

[3]  D. R. MacFarlane, J. M. Pringle, K. M. Johansson, S. A. Forsyth, M. Forsyth, Chem. Commun. 2006, 1905.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktFejtL4%3D&md5=c574a34a8f039d9e53fd425bd694a7c6CAS |

[4]  T. J. Abraham, D. R. MacFarlane, J. M. Pringle, Chem. Commun. 2011, 47, 6260.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVGgtbc%3D&md5=187928e4028483a50de5bbb4753e2f5dCAS |

[5]  H. Ye, J. Huang, J. J. Xu, N. K. A. C. Kodiweera, J. R. P. Jayakody, S. G. Greenbaum, J. Power Sources 2008, 178, 651.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFOgtbg%3D&md5=80c2d0a9268110b75fd4d10d19459d84CAS |

[6]  V. Armel, J. M. Pringle, M. Forsyth, D. R. MacFarlane, D. L. Officer, P. Wagner, Chem. Commun. 2010, 46, 3146.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1Cku7c%3D&md5=2731a14c62709c65006ee2d07936d26fCAS |

[7]  S. M. Zakeeruddin, M. Graetzel, Adv. Funct. Mater. 2009, 19, 2187.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptFGiurs%3D&md5=328e1c68cc901d66b4268455eb9188edCAS |

[8]  R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers, J. Am. Chem. Soc. 2002, 124, 4974.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVOmt70%3D&md5=40b751be280e664b18989fc93a69f6b4CAS |

[9]  C. Cadena, J. L. Anthony, J. K. Shah, T. I. Morrow, J. F. Brennecke, E. J. Maginn, J. Am. Chem. Soc. 2004, 126, 5300.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1Wht74%3D&md5=87fb5bb9f28a80c9224cfafd01ccc65dCAS |

[10]  C. Ye, W. Liu, Y. Chen, L. Yu, Chem. Commun. 2001, 2244.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslChu7w%3D&md5=601698b4e34693ab610eb6cfeb07c697CAS |

[11]  W. L. Hough, R. D. Rogers, Bull. Chem. Soc. Jpn. 2007, 80, 2262.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1CmsA%3D%3D&md5=3ed636a0defcb10da1c1cfbeba0d7367CAS |

[12]  K. Seddon, The Chemical Engineer 2002, 730, 33.Available at www.tcetoday.com
         | 1:CAS:528:DC%2BD38XjslSqtb8%3D&md5=d9c27adea8e3832e97a0cbfe63ca4679CAS |

[13]  A. R. Katritzky, R. Jain, A. Lomaka, R. Petrukhin, M. Karelson, A. E. Visser, R. D. Rogers, J. Chem. Inf. Comput. Sci. 2002, 42, 225.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFKnsbs%3D&md5=6443ac57355ebc25e2ab666e14ff6e8fCAS |

[14]  J. Gasteiger, T. Engel, Chemoinformatics 2003 (Wiley-VCH: Weinheim).

[15]  T. Engel, J. Chem. Inf. Model. 2006, 46, 2267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtF2it7fI&md5=3db0fd0c01a9eee75b23db90d91e4543CAS |

[16]  S. A. Forsyth, J. M. Pringle, D. R. MacFarlane, Aust. J. Chem. 2004, 57, 113.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVCgtw%3D%3D&md5=7927ba038384984ae2d1e749a5e199e4CAS |

[17]  A. R. Katritzky, M. Kuanar, S. Slavov, C. D. Hall, M. Karelson, I. Kahn, D. A. Dobchev, Chem. Rev. 2010, 110, 5714.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVKmtbnP&md5=d98019223e5812a866c75e074b48c02cCAS |

[18]  T. Le, V. C. Epa, F. R. Burden, D. A. Winkler, Chem. Rev. 2012, 112, 2889.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVyisA%3D%3D&md5=27abd8b01cd4e6564905501e4df7d976CAS |

[19]  I. V. Tetko, J. Gasteiger, R. Todeschini, A. Mauri, D. Livingstone, P. Ertl, V. A. Palyulin, E. V. Radchenko, N. S. Zefirov, A. S. Makarenko, V. Y. Tanchuk, V. V. Prokopenko, J. Comput. Aided Mol. Des. 2005, 19, 453.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFaht77F&md5=d28e64fe66eed7b33eec16b6941299d8CAS |

[20]  M. Karelson, U. Maran, Y. Wang, A. R. Katritzky, Collect. Czech. Chem. Commun. 1999, 64, 1551.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsFCksrk%3D&md5=f17a8f348182f8c20ef8476bbd02f135CAS |

[21]  R. D. Brown, Y. C. Martin, J. Chem. Inf. Comput. Sci. 1997, 37, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksVemtQ%3D%3D&md5=a848fad80d190035bf2fd83ad7b9986eCAS |

[22]  N. R. Draper, H. Smith, Applied Regression Analysis, 3rd edn 1998 (Wiley: New York, NY).

[23]  D. J. Livingstone, Artificial Neural Networks: Methods and Applications 2008 (Springer: New York, NY).

[24]  V. Vapnik, Statistical Learning Theory 1998 (Wiley: New York, NY).

[25]  MathWorks, MATLAB Version 7.14, Release R2012a (1 March 2012), Natick, MA, USA.

[26]  D. M. Hawkins, J. Chem. Inf. Comput. Sci. 2004, 44, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlOksbc%3D&md5=a1fe279d7cdcb1f48a5c9f2a5ca43cc4CAS |

[27]  D. Hawkins, S. Basak, D. Mills, J. Chem. Inf. Comput. Sci. 2003, 43, 579.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsFartA%3D%3D&md5=05e6e248baeb3b46a462505242ea6d53CAS |

[28]  D. A. Konovalov, L. E. Llewellyn, H. Y. Vander, D. Coomans, J. Chem. Inf. Model. 2008, 48, 2081.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFygtL3K&md5=798ac285703d4bf182757bad97e6a1c8CAS |

[29]  A. Tropsha, P. Gramatica, V. K. Gombar, QSAR Comb. Sci. 2003, 22, 69.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkslOqsrw%3D&md5=267b603e78c7bcb80cc4c6ccf72d5924CAS |

[30]  I. V. Tetko, I. Sushko, A. K. Pandey, H. Zhu, A. Tropsha, E. Papa, T. Oeberg, R. Todeschini, D. Fourches, A. Varnek, J. Chem. Inf. Model. 2008, 48, 1733.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVaru7bF&md5=73060e9fcd448735c989e3f41be157dfCAS |

[31]  I. I. Baskin, E. V. Gordeeva, R. O. Devdariani, N. S. Zefirov, V. A. Palyulin, M. I. Stankevich, Dokl. Akad. Nauk SSSR 1989, 307, 613.
         | 1:CAS:528:DyaK3cXhtFOqt7w%3D&md5=af9d37a760e94f215d167f2b51135e63CAS |

[32]  M. I. Skvortsova, I. I. Baskin, O. L. Slovokhotova, V. A. Palyulin, N. S. Zefirov, J. Chem. Inf. Comput. Sci. 1993, 33, 630.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkslWru7w%3D&md5=3024612147a22eb59073f76df582324bCAS |

[33]  D. P. Visco, R. S. Pophale, M. D. Rintoul, J.-L. Faulon, J. Mol. Graph. Model. 2002, 20, 429.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVSmtLs%3D&md5=8425c56bfdb9516f7f0de0d198264365CAS |

[34]  A. S. Reddy, S. P. Pati, P. P. Kumar, H. N. Pradeep, G. N. Sastry, Curr. Protein Pept. Sci. 2007, 8, 329.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpslKrs70%3D&md5=81b22e451a02a00f8d6384d50ea4582dCAS |

[35]  D. C. Weis, D. P. Visco, J.-L. Faulon, J. Mol. Graph. Model. 2008, 27, 466.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyks7vJ&md5=2cbcb581448b2e385f25d83ac430e4a7CAS |

[36]  T. I. Oprea, SAR QSAR Environ. Res. 2001, 12, 129.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsFKjtr0%3D&md5=01de10d4933980d70f23f87981890f02CAS |

[37]  J. V. de Julián-Ortiz, J. Gálvez, C. Muñoz-Collado, R. Garcia-Domenech, C. Gimeno-Cardona, J. Med. Chem. 1999, 42, 3308.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  W. Zheng, S. J. Cho, A. Tropsha, J. Chem. Inf. Comput. Sci. 1998, 38, 251.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvVWiu70%3D&md5=068fe6c605aaad56278681fce55a58e6CAS |

[39]  N. Brown, B. McKay, F. Gilardoni, J. Gasteiger, J. Chem. Inf. Comput. Sci. 2004, 44, 1079.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs1ens7Y%3D&md5=5c8669d2dfbbd9650c449b0d512f4a95CAS |

[40]  D. Douguet, E. Thoreau, G. Grassy, J. Comput. Aided Mol. Des. 2000, 14, 449.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktl2ju7g%3D&md5=39967215ea11db981a0c5c0d84b01c62CAS |

[41]  V. Kvasnicka, J. Pospichal, J. Chem. Inf. Comput. Sci. 1996, 36, 516.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xis1yjsrg%3D&md5=5709345489ac9b6fcf75f2a614f0cc7eCAS |

[42]  B. Lin, S. Chavali, K. Camarda, D. C. Miller, Comput. Chem. Eng. 2005, 29, 337.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVyktL7L&md5=f3e36f0ba54776b3935e5c20b07b7c8cCAS |

[43]  E. C. Marcoulaki, A. C. Kokossis, Comput. Chem. Eng. 1998, 22, S11.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivFOjt7s%3D&md5=968ae1e7895549dd070cdcf32bc4c39aCAS |

[44]  R. Gani, E. A. Brignole, Fluid Phase Equilib. 1983, 13, 331.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXmtFCltb0%3D&md5=e51953d1d31c55fb36a3f2e4621152aaCAS |

[45]  E. A. Brignole, S. Bottini, R. Gani, Fluid Phase Equilib. 1986, 29, 125.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XmtFSqt7g%3D&md5=d23c618411ca50d0210b4e70c817b9c4CAS |

[46]  R. Gani, B. Nielsen, A. Fredenslund, AIChE J. 1991, 37, 1318.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmtFWitrY%3D&md5=3d6c6035b1fa2fd0f32b02f46b3c7b83CAS |

[47]  K. V. Camarda, P. Sunderesan, Ind. Eng. Chem. Res. 2005, 44, 4361.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsleksLY%3D&md5=6bc6acd1e8123a29535d4321a7ec6430CAS |

[48]  K. V. Camarda, C. D. Maranas, Ind. Eng. Chem. Res. 1999, 38, 1884.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvFSjsbs%3D&md5=4d3f9192d917b494ab1b7fff26ffc0e8CAS |

[49]  S. Siddhaye, K. Camarda, M. Southard, E. Topp, Comput. Chem. Eng. 2004, 28, 425.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFentrg%3D&md5=89184b4b7c503b0c95b3c173a5bf769dCAS |

[50]  J.-L. Faulon, D. P. Visco, R. S. Pophale, J. Chem. Inf. Comput. Sci. 2003, 43, 707.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlams7k%3D&md5=9f8870f0e64df8c0ea4df9c9a813f47dCAS |

[51]  C. J. Churchwell, M. D. Rintoul, S. Martin, D. P. Visco, A. Kotu, R. S. Larson, L. O. Sillerud, D. C. Brown, J.-L. Faulon, J. Mol. Graph. Model. 2004, 22, 263.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsFSitw%3D%3D&md5=f13d0a40591113b279d05d4f13a2e11dCAS |

[52]  W. M. Brown, S. Martin, M. D. Rintoul, J.-L. Faulon, J. Chem. Inf. Model. 2006, 46, 826.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotV2kuw%3D%3D&md5=6fadc10d4c9fbd6b3c6766091dd76e7dCAS |

[53]  D. C. Weis, J.-L. Faulon, R. C. LeBorne, D. P. Visco, Ind. Eng. Chem. Res. 2005, 44, 8883.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFSksrjO&md5=3f6405044ae94a2fbd42559ef30a4962CAS |

[54]  D. C. Weis, D. P. Visco, Comput. Chem. Eng. 2010, 34, 1018.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFylsL0%3D&md5=81ffb019e8d26aec5c10751cbfc23510CAS |

[55]  A. R. Katritzky, A. Lomaka, R. Petrukhin, R. Jain, M. Karelson, A. E. Visser, R. D. Rogers, J. Chem. Inf. Comput. Sci. 2002, 42, 71.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosFOqsbg%3D&md5=400b62399fee72a6f1ced3e9326c0edbCAS |

[56]  G. Carrera, J. Aires-de-Sousa, Green Chem. 2005, 7, 20.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFaktbzF&md5=8db222f1e406577fecad4126aff27f3dCAS |

[57]  R. Bini, C. Chiappe, C. Duce, A. Micheli, R. Solaro, A. Starita, M. R. Tine, Green Chem. 2008, 10, 306.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislSms7s%3D&md5=9447f2a9e693a830b4fff4cb4cce0285CAS |

[58]  D. M. Eike, J. F. Brennecke, E. J. Maginn, Green Chem. 2003, 5, 323.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlyqsr8%3D&md5=41f3d77627b58fff05b82a1ec928c4f3CAS |

[59]  A. Varnek, N. Kireeva, I. V. Tetko, I. I. Baskin, V. P. Solov’ev, J. Chem. Inf. Model. 2007, 47, 1111.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlCmtr8%3D&md5=5f15dfe5267c0ddddddcd25410f996a1CAS |

[60]  S. Trohalaki, R. Pachter, G. W. Drake, T. Hawkins, Energy Fuels 2005, 19, 279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKit7fP&md5=320b0f7126a45c416c550b8a36aa8d07CAS |

[61]  S. Trohalaki, R. Pachter, QSAR Comb. Sci. 2005, 24, 485.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslWrt7c%3D&md5=774a359630aa9966036c2633bb2b8529CAS |

[62]  N. Sun, X. He, K. Dong, X. Zhang, X. Lu, H. He, S. Zhang, Fluid Phase Equilib. 2006, 246, 137.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xnt1Klt7c%3D&md5=5935e8e26a6cd2e9d400b5d8c6f0d545CAS |

[63]  I. López-Martin, E. Burello, P. N. Davey, K. R. Seddon, G. Rothenberg, ChemPhysChem 2007, 8, 690.
         | Crossref | GoogleScholarGoogle Scholar |

[64]  R. Bini, M. Malvaldi, W. R. Pitner, C. Chiappe, J. Phys. Org. Chem. 2008, 21, 622.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1egtb8%3D&md5=ee5223831c582dbcefe33588c7f09fb6CAS |

[65]  C. Han, G. Yu, L. Wen, D. Zhao, C. Asumana, X. Chen, Fluid Phase Equilib. 2011, 300, 95.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Sqs77N&md5=8460c1f194abe566fcc748ae93b8f499CAS |

[66]  G. Yu, D. Zhao, L. Wen, S. Yang, X. Chen, AIChE J. 2012, 58, 2885.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyrsbfK&md5=12fc9ef22e0c28d76ab3db38d338c00fCAS |

[67]  K. Tochigi, H. Yamamoto, J. Phys. Chem. C 2007, 111, 15989.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFaqs7nJ&md5=6903da3faed1fef912da4bc9f1d67c77CAS |

[68]  S. A. Mirkhani, F. Gharagheizi, Ind. Eng. Chem. Res. 2012, 51, 2470.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xks1ahsg%3D%3D&md5=33b3b046208d9bc66cb0a7fdfc53c982CAS |

[69]  L. Xi, H. Sun, J. Li, H. Liu, X. Yao, P. Gramatica, Chem. Eng. J. 2010, 163, 195.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOrsL%2FK&md5=2b3f345a1e573bbc9560bcf1d10b0fa9CAS |

[70]  K. Tämm, P. Burk, J. Mol. Model. 2006, 12, 417.
         | Crossref | GoogleScholarGoogle Scholar |

[71]  D. M. Eike, J. F. Brennecke, E. J. Maginn, Ind. Eng. Chem. Res. 2004, 43, 1039.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFGrsw%3D%3D&md5=1614557c5f3d967746c2dd92c4007d8dCAS |

[72]  D. J. Couling, R. J. Bernot, K. M. Docherty, J. K. Dixon, E. J. Maginn, Green Chem. 2006, 8, 82.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsF2nsA%3D%3D&md5=d55d52095c278c8c647271af48a5a329CAS |

[73]  P. Luis, I. Ortiz, R. Aldaco, A. Irabien, Ecotoxicol. Environ. Saf. 2007, 67, 423.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVOktrw%3D&md5=f90ac98a2bf290572141289de85ea1e4CAS |

[74]  P. Luis, A. Garea, A. Irabien, J. Mol. Liq. 2010, 152, 28.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFKls7Y%3D&md5=2326934c42c5776c13664e4c3fe6310bCAS |

[75]  S. Bruzzone, C. Chiappe, S. E. Focardi, C. Pretti, M. Renzi, Chem. Eng. J. 2011, 175, 17.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVGktLvO&md5=0d0aee22d3d96d21ce5fdefa07151ad4CAS |

[76]  M. I. Hossain, B. B. Samir, M. El-Harbawi, A. N. Masri, M. I. A. Mutalib, G. Hefter, C.-Y. Yin, Chemosphere 2011, 85, 990.
         | Crossref | GoogleScholarGoogle Scholar |

[77]  M. H. Fatemi, P. Izadiyan, Chemosphere 2011, 84, 553.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotl2hsb0%3D&md5=fe1c20736ac2c411f82819acb460251aCAS |

[78]  J. S. Torrecilla, J. Garcia, E. Rojo, F. Rodriguez, J. Hazard. Mater. 2009, 164, 182.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXislGmsbc%3D&md5=5e658569b37d0876cc5c0eb49660559fCAS |

[79]  A. Garcia-Lorenzo, E. Tojo, J. Tojo, M. Teijeira, F. J. Rodriguez-Berrocal, M. P. Gonzalez, V. S. Martinez-Zorzano, Green Chem. 2008, 10, 508.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFOqu7s%3D&md5=a49db9845bc1228011db1a156aee4446CAS |

[80]  J. A. Lazzus, J. Phys. Org. Chem. 2009, 22, 1193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVGrt7vL&md5=f76a219b0c09ad66c0407c8a08cf0e2bCAS |

[81]  M. G. Freire, C. M. S. S. Neves, S. P. M. Ventura, M. J. Pratas, I. M. Marrucho, J. Oliveira, J. A. P. Coutinho, A. M. Fernandes, Fluid Phase Equilib. 2010, 294, 234.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFOjsLc%3D&md5=53735021e3e81d77e622c36809a169bfCAS |

[82]  R. L. Gardas, J. A. P. Coutinho, Fluid Phase Equilib. 2008, 265, 57.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis1aku74%3D&md5=9f4638a8667ad443ddd20f63a797aa1eCAS |

[83]  S. A. Mirkhani, F. Gharagheizi, P. Ilani-Kashkouli, N. Farahani, Fluid Phase Equilib. 2012, 324, 50.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvVaqt7g%3D&md5=1fadc952d05bb1c7de88c10b56bfc67cCAS |

[84]  F. Yan, S. Xia, Q. Wang, P. Ma, J. Chem. Eng. Data 2012, 57, 805.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFahtLg%3D&md5=b01914018257761271c50add7daa94a4CAS |

[85]  H. Matsuda, H. Yamamoto, K. Kurihara, K. Tochigi, Fluid Phase Equilib. 2007, 261, 434.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFyksLzM&md5=38f8f59631d0954aa368a5eade621339CAS |

[86]  B. C. Roughton, B. Christian, J. White, K. V. Camarda, R. Gani, Comput. Chem. Eng. 2012, 42, 248.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvVOmtbg%3D&md5=27558a9292a7bbae8e8421f116fc0f46CAS |

[87]  S. E. McLeese, J. C. Eslick, N. J. Hoffmann, A. M. Scurto, K. V. Camarda, Comput. Chem. Eng. 2010, 34, 1476.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosF2qs7w%3D&md5=8407f4cb97f5ed9f5bcf53280f43a35aCAS |

[88]  G. V. S. M. Carrera, L. C. Branco, J. Aires-de-Sousa, C. A. M. Afonso, Tetrahedron 2008, 64, 2216.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFams7s%3D&md5=7275834b249cf1fedaed4d051d4f4642CAS |

[89]  I. Billard, G. Marcou, A. Ouadi, A. Varnek, J. Phys. Chem. B 2011, 115, 93.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGlur3E&md5=171f4ecfc400c77c8045323f1eed8293CAS |