Peptide-Based Star Polymers: The Rising Star in Functional Polymers
Adrian Sulistio A , Paul A. Gurr A , Anton Blencowe A and Greg G. Qiao A BA Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Vic. 3010, Australia.
B Corresponding author. Email: gregghq@unimelb.edu.au
Australian Journal of Chemistry 65(8) 978-984 https://doi.org/10.1071/CH12251
Submitted: 21 May 2012 Accepted: 2 July 2012 Published: 30 July 2012
Abstract
Peptide-based star polymers show great potential as the next-generation of functional polymers due to their structure-related properties. The peptide component augments the polymer’s properties by introducing biocompatible and biodegradable segments, and enhancing their functionalities and structural ordering, which make peptide-based star polymers an attractive candidate in the field of nanomedicine. This article provides a brief summary of the recent developments of peptide-based star polymers synthesised from 2009 onwards. It is evident that the studies conducted so far have only started to uncover the true potential of what these polymers can achieve, and with continued research it is anticipated that peptide-based star polymers will be realised as versatile platforms applicable to broader fields of study, including drug delivery, tissue engineering, biocoatings, bioimaging, and self-directing templating agents.
References
[1] A. Blencowe, J. F. Tan, T. K. Goh, G. G. Qiao, Polymer 2009, 50, 5.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksFyjsA%3D%3D&md5=3b5baeb942c06f2a717731304b575bf9CAS |
[2] J. T. Wiltshire, G. G. Qiao, Aust. J. Chem. 2007, 60, 699.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKgur7M&md5=bc785302bedcd264b2d4b367b5f8c856CAS |
[3] A. K. Ho, P. A. Gurr, M. F. Mills, G. G. Qiao, Polymer 2005, 46, 6727.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXns1Snt7k%3D&md5=4a5e6106ff692da153a322bb3ce0a01fCAS |
[4] T. K. Goh, K. D. Coventry, A. Blencowe, G. G. Qiao, Polymer 2008, 49, 5095.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12rt7vN&md5=f4263c0c982a082e039cdcec429ebfbfCAS |
[5] C. Kojima, K. Kono, K. Maruyama, T. Takagishi, Bioconjug. Chem. 2000, 11, 910.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1amsrY%3D&md5=ab9e06df1175c4ad049c760218cb0102CAS |
[6] A. Blencowe, T. K. Goh, S. P. Best, G. G. Qiao, Polymer 2008, 49, 825.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvFektbY%3D&md5=035f0b84269de26b2d0c0768af0c5203CAS |
[7] M. Spiniello, A. Blencowe, G. G. Qiao, J. Polym. Sci. Pol. Chem. 2008, 46, 2422.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt1Cnsrg%3D&md5=e253d20223117548409b5021307d0579CAS |
[8] C. T. Adkins, E. Harth, Macromolecules 2008, 41, 3472.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlt1GhsL0%3D&md5=75711680087bd5fbe9fa3c8f4d8fee1eCAS |
[9] H. Gao, K. Matyjaszewski, Macromolecules 2007, 40, 399.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1ehtg%3D%3D&md5=be091e7b8e1feaf8ecc1f11e9f59b1abCAS |
[10] B. Helms, S. J. Guillaudeu, Y. Xie, M. McMurdo, C. J. Hawker, J. M. J. Fréchet, Angew. Chem. Int. Ed. 2005, 44, 6384.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGlsrzN&md5=f9040f10ee46eef079ffb8d83ce540f0CAS |
[11] L. A. Connal, P. A. Gurr, G. G. Qiao, D. H. Solomon, J. Mater. Chem. 2005, 15, 1286.
| 1:CAS:528:DC%2BD2MXit1Chtbo%3D&md5=1770f0e7b906aa22d32b6a1a06bea14dCAS |
[12] L. A. Connal, R. Vestberg, P. A. Gurr, C. J. Hawker, G. G. Qiao, Langmuir 2008, 24, 556.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVegu7jM&md5=5bd549e80c80d8ae080bcaf39f4b6c23CAS |
[13] L. A. Connal, Aust. J. Chem. 2007, 60, 794.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKgur7N&md5=2e0f1e98dc736ed489b2985211a2b27fCAS |
[14] L. A. Connal, G. G. Qiao, Adv. Mater. 2006, 18, 3024.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlSmsbnO&md5=e30a9efbb5d5a29cbae41ed7831a3cdcCAS |
[15] L. A. Connal, G. G. Qiao, Soft Matter 2007, 3, 837.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsF2itr4%3D&md5=db454991c241449321391431a4c506ecCAS |
[16] T. Terashima, M. Kamigaito, K.-Y. Baek, T. Ando, M. Sawamoto, J. Am. Chem. Soc. 2003, 125, 5288.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivVCltr8%3D&md5=c901216e73c02b8f1a0a1e9f7b6ae739CAS |
[17] S. Seidlits, N. A. Peppas, Star Polymers and Dendrimers in Nanotechnology and Drug Delivery, in Nanotechnology in Therapeutics: Current Technology and Applications 2007, pp. 317–348 (Eds N. A. Peppas, J. Z. Hilt, J. B. Thomas) (Horizon Press: Norfolk, UK).
[18] R. Duncan, Nat. Rev. Drug Discov. 2003, 2, 347.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslamtb0%3D&md5=78faa4545a36bc500102d3ddcff68512CAS |
[19] M. Liu, K. Kono, J. M. J. Fréchet, J. Control. Release 2000, 65, 121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtl2qs70%3D&md5=7e6f37d0ce107895e1dd574d60c115c1CAS |
[20] C. Kojima, K. Kono, K. Maruyama, T. Takagishi, Bioconjug. Chem. 2000, 11, 910.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1amsrY%3D&md5=ab9e06df1175c4ad049c760218cb0102CAS |
[21] H. Sun, F. Meng, A. A. Dias, M. Hendriks, J. Feijen, Z. Zhong, Biomacromolecules 2011, 12, 1937.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFOrsLo%3D&md5=ffa1880b04e1c8cc2fb8caf37b3e358eCAS |
[22] C. L. van Eyk, C. J. McLeod, L. V. O’Keefe, R. I. Richards, Hum. Mol. Genet. 2012, 21, 536.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtV2is74%3D&md5=fea961a43ee577f15a985a19d84ea6a3CAS |
[23] T. J. Deming, J. Polym. Sci. Pol. Chem. 2000, 38, 3011.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvFClurY%3D&md5=5143d8019bd4b9dcbb4e26126fedda15CAS |
[24] T. J. Deming, Nature 1997, 390, 386.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXns12lurs%3D&md5=90dd2c65768235959b9a47a7f481f4b8CAS |
[25] H. Lu, J. Cheng, J. Am. Chem. Soc. 2007, 129, 14114.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1arsb7L&md5=69992c30e6963d4829bca3f65176a8feCAS |
[26] H. Lu, J. Cheng, J. Am. Chem. Soc. 2008, 130, 12562.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVymtb7E&md5=dcda0ff50dc962321cef7c404b6c3412CAS |
[27] I. Dimitrov, H. Schlaad, Chem. Commun. (Camb.) 2003, 2944.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptVWks70%3D&md5=33347ed61320d1335f4b8663faee4e29CAS |
[28] T. Aliferis, H. Iatrou, N. Hadjichristidis, Biomacromolecules 2004, 5, 1653.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFahtrk%3D&md5=075fa97f420254f964517723956f72a9CAS |
[29] W. Vayaboury, O. Giani, H. Cottet, A. Deratani, F. Schue, Macromol. Rapid Commun. 2004, 25, 1221.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslentLY%3D&md5=6908025e5593f662bb81e8b700bf0d2aCAS |
[30] H. R. Kricheldorf, Angew. Chem. Int. Ed. 2006, 45, 5752.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1aqtrs%3D&md5=6eca80338d264f2bb3e5a1d1cd4b625aCAS |
[31] N. Hadjichristidis, H. Iatrou, M. Pitsikalis, G. Sakellariou, Chem. Rev. 2009, 109, 5528.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWktbvI&md5=e6c5ac2399ecdb5e3e0c35d8b17ce8faCAS |
[32] D. Kafouris, M. Gradzielski, C. S. Patrickios, Macromol. Chem. Phys. 2009, 210, 367.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsVajtLw%3D&md5=0d7e625f8630d4688c6079add84b0371CAS |
[33] K.-Y. Baek, M. Kamigaito, M. Sawamoto, Macromolecules 2001, 34, 215.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXoslGrtrg%3D&md5=b7e3a137a74c7ea0efb970e4ff684686CAS |
[34] J. T. Wiltshire, G. G. Qiao, Macromolecules 2006, 39, 4828.
[35] J. Xia, X. Zhang, K. Matyjaszewski, Macromolecules 1999, 32, 4482.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsVWmur8%3D&md5=d90c5cf8090b5a1538175f9e47a9a608CAS |
[36] (a) H.-A. Klok, J. R. Hernandez, S. Becker, K. Müllen, J. Polym. Sci. Pol. Chem. 2001, 39, 1572.
| 1:CAS:528:DC%2BD3MXjtV2qur0%3D&md5=549743d16b8f7d5aae90ff2a8a20d1deCAS |
(b) J. Rodríguez-Hernández, J. Qu, E. Reuther, H.-A. Klok, K. Müllen, Polym. Bull. 2004, 52, 57.
[37] K. Aoi, K. Tsutsumiuchi, A. Yamamoto, M. Okada, Tetrahedron 1997, 53, 15415.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntlSrs78%3D&md5=ce372195f0c4b5c55a6eb192ac5b6253CAS |
[38] K. Aoi, T. Hatanaka, K. Tsutsumiuchi, A. Yamamoto, M. Okada, T. Imae, Macromol. Rapid Commun. 1999, 20, 378.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvVyitLc%3D&md5=20993cc9e5f3f8f775a37cf10187612bCAS |
[39] D. Appelhans, H. Komber, R. Kirchner, J. Seidel, C.-F. Huang, D. Voigt, D. Kuckling, F.-C. Chang, B. Voit, Macromol. Rapid Commun. 2005, 26, 586.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvFarurw%3D&md5=7049fe2be29fd130c125e2e44cc8571bCAS |
[40] A. Karatzas, H. Iatrou, N. Hadjichristidis, K. Inoue, K. Sugiyama, A. Hirao, Biomacromolecules 2008, 9, 2072.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntVyguro%3D&md5=dcf2c109e880fae0cb7635ee0a02933aCAS |
[41] S. Junnila, N. Houbenov, S. Hanski, H. Iatrou, A. Hirao, N. Hadjichristidis, O. Ikkala, Macromolecules 2010, 43, 9071.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12jur7N&md5=61d8fb7614f98cbcf644e85cebe69b49CAS |
[42] S. Junnila, N. Houbenov, S. Hanski, H. Iatrou, A. Hirao, N. Hadjichristidis, O. Ikkala, Macromolecules 2012, 45, 2850.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt12lsrg%3D&md5=a5330fab621ea27775db5a6c5a70a4a5CAS |
[43] A. Sánchez-Ferrer, R. Mezzenga, Macromolecules 2010, 43, 1093.
| Crossref | GoogleScholarGoogle Scholar |
[44] S. Abraham, C.-S. Ha, I. Kim, J. Polym. Sci. Pol. Chem. 2006, 44, 2774.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktVOhtLo%3D&md5=8d993e28b503288998d3bc9222da2e81CAS |
[45] M. A. Gauthier, H.-A. Klok, Chem. Commun. (Camb.) 2008, 2591.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVCqt78%3D&md5=9af57f308514734f664643f2d4d82e39CAS |
[46] J. G. Ray, J. T. Ly, D. A. Savin, Polym. Chem. 2011, 2, 1536.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFOkt7g%3D&md5=93cb65fd59640b4afa35182475072739CAS |
[47] S.-W. Kuo, H.-T. Tsai, Polymer 2010, 51, 5695.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2it73I&md5=c164f20935457e25bde32ab29b303608CAS |
[48] F. Audouin, R. J. I. Knoop, J. Huang, A. Heise, J. Polym. Sci. Pol. Chem. 2010, 48, 4602.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGgtr%2FJ&md5=80b1fba290bb3b010779137f24cc30b8CAS |
[49] A. Sulistio, A. Widjaya, A. Blencowe, X. Zhang, G. G. Qiao, Chem. Commun. (Camb.) 2011, 47, 1151.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVyitw%3D%3D&md5=fd151704c0296a9ee16ed6605216cbb6CAS |
[50] A. Sulistio, J. Lowenthal, A. Blencowe, M. Bongiovanni, L. Ong, S. L. Gras, X. Zhang, G. G. Qiao, Biomacromolecules 2011, 12, 3469.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSks7rI&md5=53f92bb1999e3f6b9d97eb03fb311106CAS |
[51] A. Sulistio, A. Blencowe, A. Widjaya, X. Zhang, G. G. Qiao, Polym. Chem. 2012, 3, 224.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGjsbzF&md5=9d79a4b189ac58bf2985fc9baa6bb384CAS |
[52] T. Xing, B. Lai, X. Ye, L. Yan, Macromol. Biosci. 2011, 11, 962.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFyjtL8%3D&md5=f8dff42b68a444addba258ce7c8e5bc7CAS |