Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The Synthesis of a Cubane-Substituted Dipeptide

Quentin I. Churches A , Roger J. Mulder A , Jonathan M. White B , John Tsanaktsidis A and Peter J. Duggan A C
+ Author Affiliations
- Author Affiliations

A CSIRO Materials Science and Engineering, Private Bag 10, Clayton South, Vic. 3169, Australia.

B School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic. 3010, Australia.

C Corresponding author. Email: peter.duggan@csiro.au

Australian Journal of Chemistry 65(6) 690-693 https://doi.org/10.1071/CH12179
Submitted: 2 April 2012  Accepted: 2 May 2012   Published: 24 May 2012

Abstract

Amino acids and peptides bearing cyclic hydrocarbon side-chains are of interest in the development of a wide range of bioactive molecules. The preparation of an amino acid and a dipeptide derivative bearing an unfunctionalised cubane substituent is described. Attempts to prepare a cubylalanine derivative via the corresponding dehydroalanine were unsuccessful due to the high sensitivity of this vinyl cubane compound. Conversely, the addition of cubyllithium to a (RS)-glyoxylate sulfinimine led to an effective synthesis of a cubylglycine derivative and a cubane-substituted dipeptide in diastereomerically pure form.


References

[1]  N. Kokkoni, K. Stott, H. Amijee, J. M. Mason, A. J. Doig, Biochemistry 2006, 45, 9906.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFKluro%3D&md5=92e16dff251f2567f2f7e73640822a03CAS |

[2]  I. V. Komarov, A. O. Grigorenko, A. V. Turov, V. P. Khilya, Russ. Chem. Rev. 2004, 73, 785.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVejsrrO&md5=e8b28438b578ab9e726e548bf50a97a0CAS |

[3]  A. Arasappan, S. Venkatraman, A. I. Padilla, W. Wu, T. Meng, Y. Jin, J. Wong, A. Prongay, V. Girijavallabhan, F. G. Njoroge, Tetrahedron Lett. 2007, 48, 6343.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVajsLk%3D&md5=5c3f7a243663d001f4cdc58d380f3a98CAS |

[4]  S. Horvat, K. Mlinarić-Majerski, L. Glavaš-Obrovac, A. Jakas, J. Veljković, S. Marczi, G. Kragol, M. Roščić, M. Matković, A. Milostić-Srb, J. Med. Chem. 2006, 49, 3136.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktFeiu70%3D&md5=d575c2410a24c8fac835a20038f8eeb5CAS |

[5]  (a) A. D. Knijnenburg, V. V. Kapoerchan, E. Spalburg, A. J. de Neeling, R. H. Mars-Groenendijk, D. Noort, G. A. van der Marel, H. S. Overkleeft, M. Overhand, Bioorg. Med. Chem. 2010, 18, 8403.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsValurnL&md5=f95dc46f3ef51665227c37bc23e0b70cCAS |
      (b) V. V. Kapoerchan, A. D. Knijnenburg, M. Niamat, E. Spalburg, A. J. de Neeling, P. H. Nibbering, R. H. Mars-Groenendijk, D. Noort, J. M. Otero, A. L. Llamas-Saiz, M. J. van Raaij, G. A. van der Marel, H. S. Overkleeft, M. Overhand, Chem. – Eur. J. 2010, 16, 12174.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  P. R. Schleyer, J. E. Williams, K. R. Blanchard, J. Am. Chem. Soc. 1970, 92, 2377.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXhtlWrtLs%3D&md5=6dab3bbf03816ca5558038ade6b44970CAS |

[7]  R. Pellicciari, G. Costantion, E. Giovagnoni, L. Mattoli, I. Brabet, J.-P. Pin, Bioorg. Med. Chem. Lett. 1998, 8, 1569.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkt1OgtLY%3D&md5=d1b594296f9d3c90d7e7351e76416e01CAS |

[8]  M. Bliese, J. Tsanaktsidis, Aust. J. Chem. 1997, 50, 189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtVyhu7Y%3D&md5=64b7034ca9a6323cda857e285b90c50aCAS |

[9]  R. Priefer, P. G. Farrell, D. N. Harpp, Tetrahedron Lett. 2002, 43, 8781.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosVKitbo%3D&md5=0a33a95df26f0eeb11eec8a6640105e5CAS |

[10]  G. W. Griffin, A. P. Marchand, Chem. Rev. 1989, 89, 997.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksFOjur8%3D&md5=376bc3ce56d21b5c938d3c7bb8b9d98aCAS |

[11]  N. Satyanarayana, M. Periasamy, Tetrahedron Lett. 1984, 25, 2501.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXkvV2ru7c%3D&md5=175a2f91e6156b068936d624a4985ba8CAS |

[12]  B. J. Marsh, D. R. Carbery, J. Org. Chem. 2009, 74, 3186.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFKlur0%3D&md5=4d32f4f9c2fc351625b028903899bad3CAS |

[13]  V. M. Carroll, D. N. Harpp, R. Priefer, Tetrahedron Lett. 2008, 49, 2677.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjvF2qs7c%3D&md5=be2f912074d4002714d13557c51f1393CAS |

[14]  J. R. Griffiths, J. Tsanaktsidis, G. P. Savage, R. Priefer, Thermochim. Acta 2010, 499, 15.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1yjtrs%3D&md5=cbe2146c8b0fd0335874e5208031fe79CAS |

[15]  H. Kawano, Y. Ishii, T. Ikariya, M. Saburi, S. Yoshikawa, Y. Uchida, H. Kumobayashi, Tetrahedron Lett. 1987, 28, 1905.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmtFOjtb0%3D&md5=3e1007a78228d83f9585825df363fd18CAS |

[16]  P. E. Eaton, E. Gallopini, R. Gilard, J. Am. Chem. Soc. 1994, 116, 7588.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitFSisQ%3D%3D&md5=80d6f92d19a6ffc168aa66b82b6e5beaCAS |

[17]  H. Dai, X. Lu, Org. Lett. 2007, 9, 3077.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns1Cgs7o%3D&md5=7d3e22f2b97d379e5a9eef2a3a8fc9e4CAS |

[18]  M. T. Robak, M. A. Herbage, J. A. Ellman, Chem. Rev. 2010, 110, 3600.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFChsbs%3D&md5=89dfab73739b4e4de3386f713ba9cf6aCAS |

[19]  D. A. Cogan, G. Liu, J. A. Ellman, Tetrahedron 1999, 55, 8883.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksFOlt7o%3D&md5=3bdb1212b568b71fc98d3dfebf3d188eCAS |

[20]  Q. I. Churches, J. M. White, C. A. Hutton, Org. Lett. 2011, 13, 2900.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVWnu7g%3D&md5=73d001099cbb1a068ed0e8cbe29d2bbeCAS |

[21]  T. Yabuuchi, T. Kusumi, J. Org. Chem. 2000, 65, 397.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFA%3D&md5=6efce8a9daf1cb27233a1ec75a68acabCAS |

[22]  T. Yabuuchi, T. Ooi, T. Kusumi, Chirality 1997, 9, 550.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsFakur4%3D&md5=616db63bd70f4a61e3b04d17da4f2707CAS |

[23]  G. Liu, D. A. Cogan, J. A. Ellman, J. Am. Chem. Soc. 1997, 119, 9913.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXms1Ohsb0%3D&md5=e95db49517e032fae1e7fd3ac7e572a6CAS |

[24]  M. Wakayama, J. A. Ellman, J. Org. Chem. 2009, 74, 2646.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVeisb0%3D&md5=99d3bf414959e0d8c7367f59bee9cce8CAS |

[25]  P. Sun, S. M. Weinreb, M. Shang, J. Org. Chem. 1997, 62, 8604.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnt1Cjurg%3D&md5=24bdaf78ea24028bb91434d031e64d62CAS |

[26]  S. Hanessian, X. Wang, Synlett 2009, 2009, 2803.

[27]  D. Enders, M. Seppelt, T. Beck, Adv. Synth. Catal. 2010, 352, 1413.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVOisLY%3D&md5=bcbf716a9b3d1e77fc0a2a179e04269bCAS |