One-Pot Endgroup-Modification of Hydrophobic RAFT Polymers with Cyclodextrin by Thiol-ene Chemistry and the Subsequent Formation of Dynamic Core–Shell Nanoparticles Using Supramolecular Host–Guest Chemistry
Firdaus Yhaya A B , Sandra Binauld A , Manuela Callari A and Martina H. Stenzel A CA Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
B School of Industrial Technology, University Sains Malaysia, 11800 Minden, Penang, Malaysia.
C Corresponding author. Email: m.stenzel@unsw.edu.au
Australian Journal of Chemistry 65(8) 1095-1103 https://doi.org/10.1071/CH12158
Submitted: 16 March 2012 Accepted: 4 May 2012 Published: 12 June 2012
Abstract
Poly(methyl methacrylate) PMMA, synthesized using reversible addition fragmentation chain transfer (RAFT) polymerization, was heated in a solvent at 100°C for 24 h leading to the loss of the RAFT endfunctionality and the complete conversion into a vinyl group. Mono(6-deoxy-6-mercapto)-β-cyclodextrin (β-CD-SH) was subsequently clicked onto the polymer by a thiol-ene reaction leading to PMMA with one β-CD as a terminal group (PMMA70–β-CD). Meanwhile, a RAFT agent with an adamantyl group has been prepared for the polymerization of 2-hydroxyethyl acrylate (HEA) leading to PHEA95–Ada. Two processes were employed to generate core–shell nanoparticles from these two polymers: a one-step approach that employs a solution of both polymers at stoichiometric amounts in DMF, followed by the addition of water, and a two step process that uses PMMA solid particles with surface enriched with β-CD in water, which have a strong tendency to aggregate, followed by the addition of PHEA95–Ada in water. Both pathways led to stable core–shell nanoparticles of ~150 nm in size. Addition of free β-CD competed with the polymer bound β-CD releasing the PHEA hairs from the particle surface. As a result, the PMMA particles started agglomerating resulting in a cloudy solution. A similar effect was observed when heating the solution. Since the equilibrium constant between β-CD and adamantane decreases with increasing temperature, the stabilizing PHEA chains cleaved from the surface and the solution turned cloudy due to the aggregation of the naked PMMA spheres. This process was reversible and with decreasing temperature the core–shell nanoparticles formed again leading to a clear solution.
References
[1] A. Harada, J. Li, M. Kamachi, Nature 1994, 370, 126.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkvVCitbs%3D&md5=27f5e33e123eb224176f5c1dac2169b3CAS |
[2] P. Mukhopadhyay, A. Wu, L. Isaacs, J. Org. Chem. 2004, 69, 6157.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVensrc%3D&md5=e16a1e801d2a0b2f92842d622ca4be20CAS |
[3] J. R. Nitschke, J.-M. Lehn, Proc. Natl. Acad. Sci. USA 2003, 100, 11970.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotlGltLw%3D&md5=bdde5eb96e9c19062e8888f484438fe5CAS |
[4] S. Bureekaew, S. Shimomura, S. Kitagawa, Sci. Technol. Adv. Mater. 2008, 9, 014108.
| Crossref | GoogleScholarGoogle Scholar |
[5] V. A. Friese, D. G. Kurth, Coord. Chem. Rev. 2008, 252, 199.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVaqtLbP&md5=27a4cb45948adf56f6c546d53192b999CAS |
[6] D. G. Kurth, Sci. Technol. Adv. Mater. 2008, 9, 014103.
| Crossref | GoogleScholarGoogle Scholar |
[7] J. D. Fox, S. J. Rowan, Macromolecules 2009, 42, 6823.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlSmsbs%3D&md5=434456c003375b5b5357e131b1014e14CAS |
[8] M. Miyauchi, Y. Takashima, H. Yamaguchi, A. Harada, J. Am. Chem. Soc. 2005, 127, 2984.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKmur8%3D&md5=f18d08e996b9adf7d42fb7f6d855ec3bCAS |
[9] S. Chelli, M. Majdoub, M. Jouini, S. Aeiyach, F. Maurel, K. I. Chane-Ching, P.-C. Lacaze, J. Phys. Org. Chem. 2007, 20, 30.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtleqsLs%3D&md5=5b56330f104ada5aff028cbefa0b491dCAS |
[10] K. Yamauchi, Y. Takashima, A. Hashidzume, H. Yamaguchi, A. Harada, J. Am. Chem. Soc. 2008, 130, 5024.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjt1Wqsrw%3D&md5=d4ebfb33cf3f57e34fb2ec4b9efb0cdaCAS |
[11] N. Tomimasu, A. Kanaya, Y. Takashima, H. Yamaguchi, A. Harada, J. Am. Chem. Soc. 2009, 131, 12339.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsFamu7c%3D&md5=c0f3245eaf9553dd37764c00796b08b9CAS |
[12] A. Harada, R. Kobayashi, Y. Takashima, A. Hashidzume, H. Yamaguchi, Nat. Chem. 2011, 3, 34.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFKjurfP&md5=7b2687bb8202e029e2258fdd68806341CAS |
[13] H. Yamaguchi, R. Kobayashi, Y. Takashima, A. Hashidzume, A. Harada, Macromolecules 2011, 44, 2395.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVartL0%3D&md5=4ba62c4bf5d1c0b84d8f98797b52e19eCAS |
[14] A. Bertrand, M. Stenzel, E. Fleury, J. Bernard, Polym. Chem. 2012, 3, 377.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntlehsQ%3D%3D&md5=d560da2997895ec2792cc7fcffcea0ddCAS |
[15] H. Jin, Y. Liu, Y. Zheng, W. Huang, Y. Zhou, D. Yan, Langmuir 2012, 28, 2066.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCisb3M&md5=f01a7a931aacf6bc5ed5587987132420CAS |
[16] O. Kaftan, S. Tumbiolo, F. Dubreuil, R. Auzely-Velty, A. Fery, G. Papastavrou, J. Phys. Chem. B 2011, 115, 7726.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslOmtbk%3D&md5=619fdf4d26d81107a421fa1ac2bf3527CAS |
[17] K. Karaky, C. Brochon, G. Schlatter, G. Hadziioannou, Soft Matter. 2008, 4, 1165.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFymsrs%3D&md5=911c518969e897a15171c3f1a0b6ce81CAS |
[18] H. Liu, Y. Zhang, J. Hu, C. Li, S. Liu, Macromol. Chem. Phys. 2009, 210, 2125.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsF2is7zN&md5=2e380228262da8075743b0691a64fb33CAS |
[19] M. Osaki, Y. Takashima, H. Yamaguchi, A. Harada, J. Am. Chem. Soc. 2007, 129, 14452.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Crur7N&md5=ac2fd2a37fcdfed908bef1170fcf9befCAS |
[20] G. Rydzek, A. Parat, P. Polavarapu, C. Baehr, J.-C. Voegel, J. Hemmerle, B. Senger, B. Frisch, P. Schaaf, L. Jierry, F. Boulmedais, Soft Matter. 2012, 8, 446.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFygurbE&md5=23385fab3b99b69eaeadc78ae30f506eCAS |
[21] J. Wu, H. He, C. Gao, Macromolecules 2010, 43, 2252.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFantbg%3D&md5=280e57aff884f0b39491e63896ed2099CAS |
[22] J. Zeng, K. Shi, Y. Zhang, X. Sun, B. Zhang, Chem. Commun. 2008, 3753.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVOiu7s%3D&md5=ec4c12f249dd4f923acd90cb245cc3acCAS |
[23] Z.-X. Zhang, K. L. Liu, J. Li, Macromolecules 2011, 44, 1182.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFams74%3D&md5=83de9bd0fe30761366e52cab0d9fd1aeCAS |
[24] Z.-X. Zhang, X. Liu, F. J. Xu, X. J. Loh, E.-T. Kang, K.-G. Neoh, J. Li, Macromolecules 2008, 41, 5967.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVOmtbw%3D&md5=26fa91f6aaaec8a27ea2d1207fb79b97CAS |
[25] J. Stadermann, H. Komber, M. Erber, F. Däbritz, H. Ritter, B. Voit, Macromolecules 2011, 44, 3250.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFaru7c%3D&md5=6c1b70c5f4d2705160f3f5a6107447e8CAS |
[26] A. Harada, A. Hashidzume, Aust. J. Chem. 2010, 63, 599.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFSgt7c%3D&md5=7f42f0af5e30971353a51a47cfb56bf7CAS |
[27] M. R. Eftink, M. L. Andy, K. Bystrom, H. D. Perlmutter, D. S. Kristol, J. Am. Chem. Soc. 1989, 111, 6765.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXkvFOlsbY%3D&md5=9b734f3bdced214b7fd1db3a23fba0f0CAS |
[28] K. Isenbügel, H. Ritter, R. Branscheid, U. Kolb, Macromol. Rapid Commun. 2010, 31, 2121.
| Crossref | GoogleScholarGoogle Scholar |
[29] I. Böhm, K. Isenbügel, H. Ritter, R. Branscheid, U. Kolb, Angew. Chem. Int. Ed. 2011, 50, 7407.
| Crossref | GoogleScholarGoogle Scholar |
[30] D. B. Bernert, I. Böhm, K. Isenbügel, L. Schönenberg, H. Ritter, Polym. Int. 2012, 61, 413.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFGmtQ%3D%3D&md5=2aa09e71fa28692714c8f5b9118a900aCAS |
[31] F. Yhaya, J. Lim, Y. Kim, M. T. Liang, A. M. Gregory, M. H. Stenzel, Macromolecules 2011, 44, 8433.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1KktbjO&md5=3e390136ebb7fb85f457871d3074906fCAS |
[32] A. B. Lowe, M. A. Harvison, Aust. J. Chem. 2010, 63, 1251.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVKksLk%3D&md5=1a8d37ca1557a4bdbc6300e56ffa7cefCAS |
[33] A. Gregory, M. H. Stenzel, Prog. Polym. Sci. 2012, 37, 38.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVaqt7%2FO&md5=4c359c1457a38d5e50cfe6ba30dd7a33CAS |
[34] M. Chen, G. Moad, E. Rizzardo, Aust. J. Chem. 2011, 64, 433.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVCrs7w%3D&md5=456830fbbf54ddeefe77b02863511ffeCAS |
[35] M. A. Harvison, P. J. Roth, T. P. Davis, A. B. Lowe, Aust. J. Chem. 2011, 64, 992.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVegt7bF&md5=f88dc05bc2d67b96cb57ac26e3a9c4feCAS |
[36] G. Moad, E. Rizzardo, S. H. Thang, Polym. Int. 2011, 60, 9.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Slt7rK&md5=28dd877fd4b6adc5e5acd0b406f84e41CAS |
[37] B. Chong, G. Moad, E. Rizzardo, M. Skidmore, S. H. Thang, Aust. J. Chem. 2006, 59, 755.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFeqsr7I&md5=9109df5279e08379b89c6e8c667be86cCAS |
[38] G. Moad, Y. K. Chong, A. Postma, E. Rizzardo, S. H. Thang, Polymer 2005, 46, 8458.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1WksLc%3D&md5=57f3e048f17ac2ad0d51e90f1b4cc742CAS |
[39] A. Postma, T. P. Davis, G. Moad, M. S. O’Shea, Macromolecules 2005, 38, 5371.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksFeru7g%3D&md5=c31ea8dd10f3f59985f11c9f5b71e371CAS |
[40] A. Postma, T. P. Davis, R. A. Evans, G. Li, G. Moad, M. S. O’Shea, Macromolecules 2006, 39, 5293.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1eqtLY%3D&md5=375dc290738238ac7db9afd55ff262daCAS |
[41] V. Lima, X. L. Jiang, J. Brokken-Zijp, P. J. Schoenmakers, B. Klumperman, R. Van Der Linde, J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 959.
| 1:CAS:528:DC%2BD2MXhsFOis7o%3D&md5=365a54fa6710ea67f79a122ffa9e069bCAS |
[42] J. T. Xu, J. P. He, D. Q. Fan, W. Tang, Y. L. Yang, Macromolecules 2006, 39, 3753.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktVSlsLg%3D&md5=329fdde2584feca4bc08da056a4dc383CAS |
[43] A. Kuzuya, T. Ohnishi, T. Wasano, S. Nagaoka, J. Sumaoka, T. Ihara, A. Jyo, M. Komiyama, Bioconjug. Chem. 2009, 20, 1643.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXot1ejtb8%3D&md5=afcfb9eadd5855513d57d2c3d8002a9fCAS |
[44] G.-Z. Li, R. K. Randev, A. H. Soeriyadi, G. Rees, C. Boyer, Z. Tong, T. P. Davis, C. R. Becer, D. M. Haddleton, Polym. Chem. 2010, 1, 1196.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2msLrO&md5=d809707c783f07ad2b4aecc834b609f4CAS |
[45] M. Guo, M. Jiang, G. Zhang, Langmuir 2008, 24, 10583.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVaitLrN&md5=4f15f6e67b326ab0a5fd94b0f5d33e35CAS |
[46] E. Kaya, L. J. Mathias, J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 581.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WisbvM&md5=448c76adfc206d4b71606a8486021d92CAS |
[47] S. H. Thang, Y. K. Chong, R. T. A. Mayadunne, G. Moad, E. Rizzardo, Tetrahedron Lett. 1999, 40, 2435.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvVeksL0%3D&md5=d6ba9c2ba52321df7b4d1a14103f5ac9CAS |
[48] R. C. Petter, J. S. Salek, C. T. Sikorski, G. Kumaravel, F. T. Lin, J. Am. Chem. Soc. 1990, 112, 3860.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXitFOns78%3D&md5=95f46184b7359a803478680e5979c46cCAS |