In Situ SAXS Analysis of Interfacial Wetting on Nanorough Surfaces
Jacky K. L. Cho A , Lauren A. Palmer A , Alex H.-F. Wu A , Irving I. Liaw A B , David Cookson C and Robert N. Lamb AA The School of Chemistry, University of Melbourne, Vic. 3010, Australia.
B Melbourne Materials Institute, University of Melbourne, Vic. 3010, Australia.
C Australian Synchrotron, Clayton, Vic. 3168, Australia.
D Corresponding author. Email: rnlamb@unimelb.edu.au
Australian Journal of Chemistry 65(3) 254-258 https://doi.org/10.1071/CH12002
Submitted: 3 January 2012 Accepted: 16 February 2012 Published: 21 March 2012
Abstract
Superhydrophobic surfaces were fabricated through a nanoparticle sol-gel process in the presence of a mono-disperse latex particle. By varying precursor nanoparticle size, surfaces of varying degrees of nanoroughness but controlled macro-roughness were produced, all of which exhibited superhydrophobic properties (θwater >160°, sliding angle <10°). These were immersed in water and studied in situ using synchrotron small angle X-ray scattering where the percentage interface under wetting (in contact with liquid) was directly quantified and found to agree well with traditional Cassie equations. Wetting studies in sodium dodecyl sulphate solutions of decreasing surface tension highlighting surfaces of increased hierarchical roughness (pseudo-fractal dimension ~2.5) contained significant quantity of entrapped air even at fluid surface tensions down to 37 mN m–1.
References
[1] P. G. de Gennes, Rev. Mod. Phys. 1985, 57, 827.| Crossref | GoogleScholarGoogle Scholar |
[2] S. Herminghaus, Europhys. Lett. 2000, 52, 165.
| Crossref | GoogleScholarGoogle Scholar |
[3] J. Bico, C. Tordeux, D. Quéré, Europhys. Lett. 2001, 55, 214.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFeqsb4%3D&md5=f59bbfbbf90f236fbadd600ce3c9b616CAS |
[4] A. Marmur, Langmuir 2003, 19, 8343.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtl2lt78%3D&md5=099a8d2987af9605ce7a88882dc342e0CAS |
[5] M. Nosonovsky, B. Bhushan, Microelectron. Eng. 2007, 84, 382.
| Crossref | GoogleScholarGoogle Scholar |
[6] E. Bormashenko, R. Pogreb, T. Stein, G. Whyman, M. Erlich, A. Musin, V. Machavariani, D. Aurbach, Phys. Chem. Chem. Phys. 2008, 10, 4056.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFylsbg%3D&md5=c2401dd14cc2a6c4615af02da6cb2640CAS |
[7] G. E. Fogg, Nature 1944, 154, 515.
| Crossref | GoogleScholarGoogle Scholar |
[8] A. B. D. Cassie, S. Baxter, Nature 1945, 155, 21.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH2MXhtlequg%3D%3D&md5=52d627e137e50875ef5c98d605ffe380CAS |
[9] P. Roach, N. J. Shirtcliffe, M. I. Newton, Soft Matter 2008, 4, 224.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslejsA%3D%3D&md5=30175754a3d35cdc4d7dd8c475ebffdfCAS |
[10] A. Lafuma, D. Quere, Nat. Mater. 2003, 2, 457.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXls1elsL0%3D&md5=4a350744cb2bc1d916d33f1dec7409b2CAS |
[11] A. Nakajima, K. Hashimoto, T. Watanabe, Monatsh. Chem. 2001, 132, 31.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1Omurw%3D&md5=413a9ea39fb2f9be212fecbd6f35ad9eCAS |
[12] R. Lamb, H. Zhang, C. L. Raston, Hydrophobic Films. Patent (1997). EP 0969934.
[13] R. Lamb, A. Jones, H. Zhang, Hydrophobic Material. Patent (1999). US 6,743,467, EP 1210396.
[14] C. Neinhuis, W. Barthlott, Ann. Bot. (Lond.) 1997, 79, 667.
| Crossref | GoogleScholarGoogle Scholar |
[15] A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi, A. Fujishima, Langmuir 2000, 16, 7044.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltVShsL0%3D&md5=d1661d7c1b25595b071e29714a19aa6aCAS |
[16] R. Blossey, Nat. Mater. 2003, 2, 301.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtlaltbs%3D&md5=db2ffc3463363e37a2ce1f9f2b114a79CAS |
[17] X. T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, A. Fujishima, Chem. Mater. 2005, 17, 696.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFahtQ%3D%3D&md5=ad98bf72019e0fb3afd80a1426c31a09CAS |
[18] N. Fusetani, Nat. Prod. Rep. 2004, 21, 94.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisFWgtLY%3D&md5=b93cb13c8bf211f0943c62c2e95a57b8CAS |
[19] L. D. Chambers, K. R. Stokes, F. C. Walsh, R. J. K. Wood, Surf. Coat. Tech. 2006, 201, 3642.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1agsL%2FF&md5=74edca3c179eeb577e5f098ffb0c269bCAS |
[20] A. J. Scardino, H. Zhang, D. J. Cookson, R. N. Lamb, R. de Nys, Biofouling 2009, 25, 757.
| 1:CAS:528:DC%2BD1MXhsVehs7fP&md5=bec9ef4b43646b18b64c573ba6bcebc4CAS |
[21] M. E. Callow, J. A. Callow, Biologist 2002, 49, 1.
[22] J. L. Laforte, M. A. Allaire, J. Laflamme, Atmos. Res. 1998, 46, 143.
| Crossref | GoogleScholarGoogle Scholar |
[23] S. A. Kulinich, M. Farzaneh, Appl. Surf. Sci. 2009, 255, 8153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsl2jsL8%3D&md5=b087ba48c1cfdfe4e2291f6c4ddda61fCAS |
[24] L. Mishchenko, B. Hatton, V. Bahadur, J. A. Taylor, T. Krupenkin, J. Aizenberg, ACS Nano 2010, 4, 7699.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSisr%2FM&md5=a0de6f92d9a0d04122e2e08f5ea1ed21CAS |
[25] S. Kulinich, S. Farhadi, K. Nose, X. Du, Langmuir 2011, 27, 25.
| 1:CAS:528:DC%2BC3cXhsFakt7jE&md5=27adc0a4d5210d3e10378727406d6a84CAS |
[26] X.-M. Li, D. Reinhoudt, M. Crego-Calama, Chem. Soc. Rev. 2007, 36, 1350.
| Crossref | GoogleScholarGoogle Scholar |
[27] R. N. Wenzel, Ind. Eng. Chem. 1936, 28, 988.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA28Xkslentg%3D%3D&md5=92b57462fd4958c51ee44eacfc025c92CAS |
[28] A. B. D. Cassie, S. Baxter, Trans. Faraday Soc. 1944, 40, 546.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH2MXhsFKqsA%3D%3D&md5=2e0ba4a6451d92611072ba8e446c0379CAS |
[29] E. Bormashenko, Philos. Trans. R. Soc., A 2010, 368, 4695.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSgsbnP&md5=44919d4b1dbb801cd50754fb87c333acCAS |
[30] G. Whyman, E. Bormashenko, Langmuir 2011, 8171.
| 1:CAS:528:DC%2BC3MXntFSktb0%3D&md5=c2fecd693692ed5c7e4324730c1a6cb9CAS |
[31] H. Zhang, R. N. Lamb, D. J. Cookson, Appl. Phys. Lett. 2007, 91, 254106.
| Crossref | GoogleScholarGoogle Scholar |
[32] K. L. Cho, I. I. Liaw, A. H. F. Wu, R. N. Lamb, J. Phys. Chem. C 2010, 114, 11228.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntFyrt70%3D&md5=5c7380cb73fb7515eb5f43864b2552c6CAS |
[33] A. H. F. Wu, K. L. Cho, I. I. Liaw, G. Moran, N. Kirby, R. N. Lamb, Faraday Discuss. 2010, 146, 223.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps1Churk%3D&md5=77f2abe3f15d4fb2c23c0c90006f04f4CAS |
[34] G. Beaucage, J. Appl. Cryst. 1995, 28, 717.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksFelug%3D%3D&md5=1a1926026a5bca8967f1378f7d75cf16CAS |
[35] J. B. Boreyko, C. H. Baker, C. R. Poley, C. H. Chen, Langmuir 2011, 27, 7502.
| 1:CAS:528:DC%2BC3MXmtlylu7g%3D&md5=e5052be1ac4ffceddcc5483effed3bbeCAS |
[36] N. Kirby, J. Boldeman, I. Gentle, D. Cookson, Conceptual Design of the Small Angle Scattering Beamline at the Australian Synchrotron 2007, p. 887 (American Institute of Physics: Melville, NY).