Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis and Application of New Photocrosslinkers for Poly(ethylene glycol)

Hakim Mehenni A , Vincent Pourcelle A , Jean-François Gohy A and Jacqueline Marchand-Brynaert A B
+ Author Affiliations
- Author Affiliations

A Institut de la Matière Condensée et des Nanosciences (IMCN), Université catholique de Louvain, Bâtiment Lavoisier, Place Louis Pasteur L4.01.02, B-1348 Louvain-la-Neuve, Belgium.

B Corresponding author. Email: jacqueline.marchand@uclouvain.be

Australian Journal of Chemistry 65(2) 193-201 https://doi.org/10.1071/CH11485
Submitted: 16 December 2011  Accepted: 19 January 2012   Published: 21 February 2012

Abstract

Photocrosslinking of polyethylene glycol (PEG) using exogenous agents is a convenient way to produce branched PEG from commercial sources thus avoiding the tricky synthesis of new reactive and functional polymers. In this study, we synthesized two series of new photocrosslinkers, i.e. bis-fluorophenyl azide and bis-trifluoromethyl diazirine, which under soft UV-irradiation produce reactive species (i.e. nitrene and carbene respectively) that insert into the C–H bond of the polymer backbone, building new bridges between macromolecular chains. These photocrosslinkers are different in terms of behaviour under irradiation and affinity for the target substrate (i.e. PEG). Thus, practical conditions for photocrosslinking of a 10-kDa PEG were studied and followed by NMR and size-exclusion chromatography. In particular, we investigated irradiation in bulk or in solvent, at different irradiation times, with several concentrations of PEG and photolinkers. Finally, we were able to design a procedure to obtain soluble crosslinked PEGs of 300 kDa.


References

[1]  K. Knop, R. Hoogenboom, D. Fischer, U. S. Schubert, Angew. Chem. Int. Edit. 2010, 49, 6288.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVOqtLbN&md5=eae3abaf3ee1a0b3068d3ccf33bb18e6CAS |

[2]  J. Zhu, Biomaterials 2010, 31, 4639.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksV2ru7o%3D&md5=646b1b144a99a64ca48c9879059ae005CAS |

[3]  D. Wilms, M. Schömer, F. Wurm, M. I. Hermanns, C. J. Kirkpatrick, H. Frey, Macromol. Rapid Commun. 2010, 31, 1811.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlaksLfM&md5=486846fcb4eddd33e2e8c63ae76693b5CAS |

[4]  E. A. Phelps, N. O. Enemchukwu, V. F. Fiore, J. C. Sy, N. Murthy, T. A. Sulchek, T. H. Barker, A. J. García, Adv. Mater. 2012, 24, 64.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1elu7zJ&md5=6bde954b0c12000d0c209a09eb100c9bCAS |

[5]  N. Karaca, G. Temel, D. Karaca Balta, M. Aydin, N. Arsu, J. Photoch. Photobio. A 2010, 209, 1.
         | 1:CAS:528:DC%2BD1MXhsFyjt77P&md5=f307f2d826fd520338f6d8cc8455c96cCAS |

[6]  N. Arsalani, P. Zare, H. Namazi, Express Polym. Lett. 2009, 3, 429.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXot1KjtL8%3D&md5=d8be8f63293784002f85580013af2cfaCAS |

[7]  Y. Liu, J. Liu, J. Xu, S. Feng, T. P. Davis, Aust. J. Chem. 2010, 63, 1413.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1aktLzF&md5=b06a35bf0494d28bca99ebd88126cb04CAS |

[8]  T. Yang, H. Long, M. Malkoch, E. K. Gamstedt, L. Berglund, A. Hult, J. Polym. Sci. A1 2011, 49, 4044.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFGgtLw%3D&md5=b22310dff7b17ae2ea5615ee3151b9e8CAS |

[9]  M. S. Platz, Acc. Chem. Res. 1995, 28, 487.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsVGis7k%3D&md5=4334641882b7e6eaaa2ce0542df78e17CAS |

[10]  A. Blencowe, W. Hayes, Soft Matter 2005, 1, 178.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslOisb0%3D&md5=559699709342d2a869e3c09c62096b02CAS |

[11]  M. Hashimoto, Y. Hatanaka, Anal. Biochem. 2006, 348, 154.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlaisL7K&md5=e6105afa0740752608eaa5ca070a34fcCAS |

[12]  M. Hashimoto, Y. Hatanaka, Eur. J. Org. Chem. 2008, 2513.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1Sksb0%3D&md5=8aa547e25055f549a55cdbfd63ab707dCAS |

[13]  A. Blencowe, K. Cosstick, W. Hayes, New J. Chem. 2006, 30, 53.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs1SktA%3D%3D&md5=41e96681ac4bae6834e14c185e36c20aCAS |

[14]  D. Dankbar, G. Gauglitz, Anal. Bioanal. Chem. 2006, 386, 1967.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1CmsbrO&md5=6968869d6985815a3fab5c21597c5488CAS |

[15]  L.-H. Liu, M. Yan, Acc. Chem. Res. 2010, 43, 1434.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVGgtbg%3D&md5=a247347ef7dc5c57209a72dd32201af9CAS |

[16]  A. Reiser, L. J. Leyshon, L. Johnston, Trans. Faraday Soc. 1971, 67, 2389.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXlsVWgs7g%3D&md5=0a276bb573eae3268f5c13bbaa672d1dCAS |

[17]  A. Blencowe, C. Blencowe, K. Cosstick, W. Hayes, React. Funct. Polym. 2008, 68, 868.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVSmt7s%3D&md5=9437b8c2c017646ea4c33922dd32fd6eCAS |

[18]  J. F. W. Keana, S. X. Cai, J. Org. Chem. 1990, 55, 3640.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXitlCrur0%3D&md5=f0550af7412fcefe8909fc48e05c8c84CAS |

[19]  M. Nassal, Liebigs Ann. Chem. 1983, 1510.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlvFCrtro%3D&md5=4e6c6d4df0f8eb63c29b43b581fb8db5CAS |

[20]  E. Leyva, R. Sagredo, E. Moctezuma, J. Fluor. Chem. 2004, 125, 741.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVGgt7w%3D&md5=d58fb264464240cdcef1f51ad58b0f8cCAS |

[21]  G. B. Schuster, M. S. Platz, Adv. Photochem. 1992, 17, 69.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlvVWntb8%3D&md5=e046c3ee326b24bb9e1f75ea202922deCAS |

[22]  M. Nassal, J. Am. Chem. Soc. 1984, 106, 7540.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtlWjs7o%3D&md5=38b550a0207e5f8420229023427a3661CAS |

[23]  S. P. Costas, Macromol. Symp. 2010, 291–292,
         | Crossref | GoogleScholarGoogle Scholar |

[24]  V. Pourcelle, H. Freichels, F. Stoffelbach, R. Auzély-Velty, C. Jérôme, J. Marchand-Brynaert, Biomacromolecules 2009, 10, 966.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitFylsrc%3D&md5=71657513dc42cfa61303f1493762f33dCAS |

[25]  L. Renaudie, C. LeNarvor, E. Lepleux, P. Roger, Biomacromolecules 2007, 8, 679.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitFGltw%3D%3D&md5=024c244f50583e2bbef88d6ae8f2471cCAS |

[26]  J. Moreau, J. Marchand-Brynaert, Eur. J. Org. Chem. 2011, 2011, 1641.
         | Crossref | GoogleScholarGoogle Scholar |