Synthesis of Silver Nanoparticles with Monovalently Functionalized Self-Assembled Monolayers
P. Free A C , D. Paramelle A , M. Bosman A , J. Hobley A and D. G. Fernig BA Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602.
B Department of Structural and Chemical Biology, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
C Corresponding author. Email: freepf@imre.a-star.edu.sg
Australian Journal of Chemistry 65(3) 275-282 https://doi.org/10.1071/CH11429
Submitted: 8 November 2011 Accepted: 3 February 2012 Published: 13 March 2012
Abstract
The importance of having nanoparticles that are soluble, stable, and that have no non-specific binding is often overlooked, but essential for their use in biology. This is particularly prominent with silver nanoparticles that are susceptible to the effects of aggregation and metal-surface reactivity. Here we use a combination of several small peptidols and short alkanethiol ethylene glycol ligands to develop a ligand shell that is reasonably resistant to ligand exchange and non-specific binding to groups common in biological molecules. The stability of the nanoparticles is not affected by the inclusion of a functional ligand, which is done in the same preparative step. The stoichiometry of the nanoparticles is controlled, such that monofunctional silver nanoparticles can be obtained. Two different sets of nanoparticles, functionalized with either Tris-nitrilotriacetic acid or a hexa-histidine peptide sequence, readily form dimers/oligomers, depending on their stoichiometry of functionalization.
References
[1] S. S. Agasti, S. Rana, M.-H. Park, C. K. Kim, C.-C. You, V. M. Rotello, Adv. Drug Deliv. Rev. 2010, 62, 316.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1Ont7k%3D&md5=3684c6fdc57be33606d67f34bc0ee21aCAS |
[2] P. W. Faulk, M. G. Taylor, Immunochemistry 1971, 8, 1081.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XlslGitA%3D%3D&md5=8e3a4d997a6659a07061ea54c1793276CAS |
[3] C. A. Mirkin, A. Nel, S. C. Thaxton, in Nanotechnology Research Directions for Societal Needs in 2020. (Eds M. C. Roco, C. A. Mirkin, M. C. Hersam) 2010, Ch. 7, p. 224 (Springer: Boston, USA).
[4] P. Ghosh, G. Han, M. De, C. K. Kim, V. M. Rotello, Adv. Drug Deliv. Rev. 2008, 60, 1307.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVOnsrY%3D&md5=4a8a7e0fb757066828185ec5db96c83aCAS |
[5] Z. Huang, P. K. Jain, I. H. El-Sayad, M. A. El-Sayad, Nanomedicine 2007, 2, 681.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1CnsrrN&md5=4dfbff8445006a5956d117984715e61eCAS |
[6] K. M. Mayer, J. H. Hafner, Chem. Rev. 2011, 111, 3828.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVenuro%3D&md5=48563a876b2d4f0c0626fc873955527eCAS |
[7] M. Fan, M. Thompson, M. L. Andrade, A. G. Brolo, Anal. Chem. 2010, 82, 6350.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXot1GitbY%3D&md5=b726a90598e769ddd8f2cc7c3a637877CAS |
[8] S. Berciaud, L. Cognet, B. Lounis, Nano Lett. 2005, 5, 2160.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFertLzK&md5=27004d54cd6aa60640d37c3f2af0cf37CAS |
[9] V. Zharov, Nat. Photonics 2011, 5, 110.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOjtr0%3D&md5=9ff5f4fcec06baeed657fd7ed4b9a2a4CAS |
[10] X. Yang, E. W. Stein, S. Ashkenazi, L. V. Wang, Nanobiotechnol. 2009, 1, 360.
| 1:CAS:528:DC%2BC3cXmtVSrtLo%3D&md5=81f034e294bcc43ac3f7eafab9d8c6d1CAS |
[11] J. Kneipp, H. Kneipp, K. Kneipp, Chem. Soc. Rev. 2008, 37, 1052.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFOksb8%3D&md5=e0d72a70c3556882f409d0bf05ef4452CAS |
[12] R. Gill, E. C. Le Ru, Phys. Chem. Chem. Phys. 2011, 13, 16366.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSjsbrP&md5=ea2ed81577262a8d4df5beb1ce21d721CAS |
[13] J. Zhang, J. Malicka, I. Gryczynski, J. R. Lakowicz, Anal. Biochem. 2004, 330, 81.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkslSjsLg%3D&md5=9bd2b3b6f7360e5b588bdee5fd5673c4CAS |
[14] S. Eustis, M. A. El-Sayad, Chem. Soc. Rev. 2006, 35, 209.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVekt7c%3D&md5=51ece2f4ec3acc33d936a7bfd1f09f02CAS |
[15] R. Lévy, N. T. K. Thanh, C. R. Doty, I. Hussain, R. J. Nichols, D. J. Schiffrin, M. Brust, D. G. Fernig, J. Am. Chem. Soc. 2004, 126, 10076.
| Crossref | GoogleScholarGoogle Scholar |
[16] C. R. Doty, R. T. Tshikhudo, M. Brust, D. G. Fernig, Chem. Mater. 2005, 17, 4630.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVChtr4%3D&md5=1a1fd21c6053b37d0980cbb77da95825CAS |
[17] L. Duchesne, D. Gentili, M. Comes-Franchini, D. G. Fernig, Langmuir 2008, 24, 13572.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCqtbjK&md5=c8cb14552b77f1cadac5dd21370718faCAS |
[18] K. J. Jeong, K. Butterfield, A. Panitch, Langmuir 2008, 24, 8794.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslKmuro%3D&md5=5b658d0e5a6884c017edfb92e0f902aaCAS |
[19] L. Strong, G. M. Whitesides, Langmuir 1988, 4, 546.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXitFSqs74%3D&md5=5887242f2613354f03cd2e29d3bd6b54CAS |
[20] A. C. Templeton, W. P. Wuelfing, R. W. Murray, Acc. Chem. Res. 2000, 33, 27.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsFOnsro%3D&md5=ca49bfd2c2371887a696268ececf09caCAS |
[21] F. Zhang, M. W. A. Skoda, R. M. J. Jacobs, S. Zorn, R. A. Martin, C. M. Martin, G. F. Clark, G. Ã. Goerigk, F. Schreiber, J. Phys. Chem. A 2007, 111, 12229.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSmtr%2FJ&md5=13afc564c79b2dba872d8b96c455a7dbCAS |
[22] L. R. Skewis, B. M. Reinhard, ACS Appl. Mater. Interfaces 2010, 2, 35.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1SmsLbE&md5=4ca2522eb8ea89f2da2d69a32a9484d6CAS |
[23] V. Sée, P. Free, Y. Cesbron, P. Nativo, U. Shaheen, D. Rigden, D. G. Spiller, D. G. Fernig, M. R. H. White, I. A. Prior, M. Brust, B. Lounis, R. Lévy, ACS Nano 2009, 3, 2461.
| Crossref | GoogleScholarGoogle Scholar |
[24] P. Free, C. P. Shaw, R. Lévy, Chem. Commun. 2009, 2009, 5009.
| Crossref | GoogleScholarGoogle Scholar |
[25] Z. Wang, R. Lévy, D. G. Fernig, M. Brust, J. Am. Chem. Soc. 2006, 128, 2214.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xoslagtg%3D%3D&md5=3e9745d38f4cbddd7a1b1dffc6186a6eCAS |
[26] A. G. Tkachenko, H. Xie, D. Coleman, W. Glomm, J. Ryan, M. F. Anderson, S. Franzen, D. L. Feldheim, J. Am. Chem. Soc. 2003, 125, 4700.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVaks70%3D&md5=1eb8a1180715ead8e311c5206e0ab819CAS |
[27] B. C. Vidal, , T. C. Deivaraj, J. Yang, H.-P. Too, G.-M. Chow, L. M. Gan, J. Y. Lee, New J. Chem. 2005, 29, 812.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1equrg%3D&md5=e41152c10d719086c0a5f9e7a8ef7415CAS |
[28] J.-S. Lee, A. K. R. Lytton-Jean, S. J. Hurst, C. A. Mirkin, Nano Lett. 2007, 7, 2112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsV2ltbc%3D&md5=d6de332102bb9986fdbf9f1620563835CAS |
[29] A. Steinbrück, A. Csaki, K. Ritter, M. Leich, J. M. Köhler, W. Fritzsche, Biophotonics 2008, 1, 104.
| Crossref | GoogleScholarGoogle Scholar |
[30] X. Xu, J. Wang, F. Yang, K. Jiao, X. Yang, Small 2009, 5, 2669.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFektb3E&md5=0a264bb30b4887d4bdfcb59be8877ea9CAS |
[31] J. G. Worden, Q. Dai, Q. Huo, Chem. Commun. 2006, 2006, 1536.
| Crossref | GoogleScholarGoogle Scholar |
[32] X. Liu, J. G. Worden, Q. Dai, J. Zou, J. Wang, Q. Huo, Small 2006, 2, 1126.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1Snt74%3D&md5=4f9cfc747607e87ce6f61574b1e97c1cCAS |
[33] J. G. Worden, Q. Dai, A. W. Shaffer, Q. Huo, Chem. Mater. 2004, 16, 3746.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFCht7w%3D&md5=0e692b10701e8c4eefb23dcb91c51b14CAS |
[34] Z. Zhijuan, R. Fei, X. Yibing, W. Yong, Y. Haiyan, F. Degang, J. Nanosci. Nanotechnol. 2011, 3, 2163.
[35] K.-M. Sung, D. W. Mosley, B. R. Peelle, S. Zhang, J. M. Jacobson, J. Am. Chem. Soc. 2004, 126, 5064.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1Whs70%3D&md5=de2ee3a49a10e9b4dc1b1e86c071b928CAS |
[36] W. Li, P. H. C. Camargo, X. Lu, Y. Xia, Nano Lett. 2009, 9, 485.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFals7nO&md5=aad598f195c0ce93c3ab088db0e87f8fCAS |
[37] G. Chen, Y. Wang, L. Huey Tan, M. Yang, L. Siew Tan, Y. Chen, H. Chen, J. Am. Chem. Soc. 2009, 131, 4218.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFyqsbw%3D&md5=df675f786f3805835a4dd97d6f65fb65CAS |
[38] L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, N. J. Halas, ACS Nano 2010, 4, 819.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlKmsg%3D%3D&md5=0c851c44fdad8103b1ef9aaf60558569CAS |
[39] H. Wang, N. J. Halas, Nano Lett. 2006, 6, 2945.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFyntbnP&md5=e4df0bc282b22fff41536e2396a24f65CAS |
[40] S. Sheikholeslami, Y. Jun, P. K. Jain, P. A. Alivisatos, Nano Lett. 2010, 10, 2655.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt1CmtL0%3D&md5=4773d80fc55a69258608fb81a00d5544CAS |
[41] L. Yang, H. Wang, B. Yan, B. M. Reinhard, J. Phys. Chem. C 2010, 114, 4901.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisFGlt7c%3D&md5=160013fe6c3abc41801e03c5e6d50905CAS |
[42] B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, P. A. Alivisatos, J. Liphardt, Proc. Natl Acad. Sci. USA 2007, 104, 2667.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVWru70%3D&md5=fc6b3227abcc58e5b9ad03ee10dd186bCAS |
[43] C. Sönnichsen, B. M. Reinhard, J. Liphardt, P. A. Alivisatos, Nat. Biotechnol. 2005, 23, 741.
| Crossref | GoogleScholarGoogle Scholar |
[44] R. Lévy, Z. Wang, L. Duchesne, C. R. Doty, A. I. Cooper, M. Brust, D. G. Fernig, ChemBioChem 2006, 7, 592.
| Crossref | GoogleScholarGoogle Scholar |
[45] S. Lata, M. Gavutis, R. Tampé, J. Piehler, J. Am. Chem. Soc. 2006, 128, 2365.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsVKjtg%3D%3D&md5=10505fba399c02ed4d338373d65be84bCAS |
[46] S. Lata, A. Reichel, R. Brock, R. Tampé, J. Piehler, J. Am. Chem. Soc. 2005, 127, 10205.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsFKrtrw%3D&md5=f61c0fabce339127d65a56721a34b247CAS |
[47] J. A. Bornhorst, J. J. Falke, Methods Enzymol. 2000, 326, 245.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXot1SmsL8%3D&md5=0441ce69dddbc295ffa63255fea785e0CAS |
[48] J. P. Novak, L. C. Brousseau , F. W. Vance, R. C. Johnson, B. I. Lemon, J. T. Hupp, D. L. Feldheim, J. Am. Chem. Soc. 2000, 122, 12029.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVGns7Y%3D&md5=bd1064c2e1c51e209058f4db6587da7eCAS |
[49] E. Hao, G. C. Schatz, J. Chem. Phys. 2004, 120, 357.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXosVU%3D&md5=bfab18138f4164a66ea6fc07086e0bebCAS |