Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Dual-Level Direct Dynamics Studies on the Hydrogen Abstraction Reactions of CH2CH3–n Xn + HBr (X = Cl, Br and n = 1, 2)

Li Wang A , Jianxiang Zhao A , Hongqing He B and Jinglai Zhang A C
+ Author Affiliations
- Author Affiliations

A Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.

B Wuhan Center for Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China.

C Corresponding author. Email: zhangjinglai@henu.edu.cn

Australian Journal of Chemistry 65(2) 160-168 https://doi.org/10.1071/CH11420
Submitted: 27 October 2011  Accepted: 21 December 2011   Published: 1 February 2012

Abstract

The reactions of the HBr molecule with CH2CH2Cl (reaction R1), CH2CHCl2 (R2), CH2CH2Br (R3) and CH2CHBr2 (R4) are investigated by a dual-level direct dynamics method. The optimized geometries and frequencies of the stationary points were calculated at the MPW1K/6–311+G(d,p) and BMK/6–311+G(d,p) levels. To refine the reaction enthalpy and energy barrier height of each reaction, single-point energy calculations were carried out by the G2M(RCC5) method based on the geometries optimized at the above-mentioned two levels. Using the canonical variational transition state theory or the canonical variational transition state theory with the small-curvature tunneling correction, the rate constants of HBr with CH2CH2Cl (R1), CH2CHCl2 (R2), CH2CH2Br (R3), and CH2CHBr2 (R4) were calculated over a wide temperature range of 200–2000 K at the G2M(RCC5)//MPW1K/6–311+G(d,p) level. The effect of chlorine or bromine substitution on the ethyl radical reactivity is discussed. Finally, the total rate constants are fitted by two models, i.e. three-parameter and four-parameter expressions.


References

[1]  P. Beichert, L. Wingen, J. Lee, R. Vogt, M. J. Ezell, M. Ragains, R. Neavyn, B. J. Finlayson-Pitts, J. Phys. Chem. 1995, 99, 13156.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnsVKrsrc%3D&md5=fda2f6d5768e681d99b7d34f299d4074CAS |

[2]  J. M. Nicovich, S. Wang, M. L. McKee, P. H. Wine, J. Phys. Chem. 1996, 100, 680.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVSgs73E&md5=7549b435630f511f04a23afbad4e6570CAS |

[3]  L. Andrews, J. M. Dyke, N. Jonathan, N. Keddar, A. Morris, J. Am. Chem. Soc. 1984, 106, 299.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXltFSiug%3D%3D&md5=c94321bd4f4e3b45ac9c80330f5904d9CAS |

[4]  J. A. Seetula, J. Chem. Soc., Faraday Trans. 1996, 92, 3069.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlsVGhurw%3D&md5=593b53a8e354c31a378d49b65184fb53CAS |

[5]  K. Miyokawa, E. Tschuikow-Roux, J. Phys. Chem. 1990, 94, 715.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlsVyktA%3D%3D&md5=f9dc6eafda093938b51ae47d79853f32CAS |

[6]  H. Q. He, J. Y. Liu, Z. S. Li, L. Wang, C. C. Sun, J. Mol. Struc.-Theochem 2008, 859, 30.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1Oqu7Y%3D&md5=2b99b3102f5e47284c844d7cd9a79828CAS |

[7]  J. A. Seetula, J. Chem. Soc., Faraday Trans. 1998, 94, 891.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvFWrt7c%3D&md5=2c0e4a7fa7cf04c5954001d07f9305b5CAS |

[8]  K. T. Wong, D. A. Armstrong, Can. J. Chem. 1969, 47, 4183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXlt1eitbo%3D&md5=df612408f0c96d691360b6125628c470CAS |

[9]  D. G. Truhlar, in The Reaction Path in Chemistry: Current Approaches and Perspectives 1995, p. 229 (Ed. D. Heidrich) (Kluwer: Dordrecht, the Netherlands).

[10]  D. G. Truhlar, B. C. Garrent, S. J. Klippenstein, J. Phys. Chem. 1996, 100, 12771.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xkt1ansr8%3D&md5=d7ee3d977cf299e1179ded1484259b81CAS |

[11]  W. P. Hu, D. G. Truhlar, J. Am. Chem. Soc. 1996, 118, 860.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtVWqtg%3D%3D&md5=342ce1371a45485e923472be81f91398CAS |

[12]  W. P. Hu, Y. P. Liu, D. G. Truhlar, J. Chem. Soc., Faraday Trans. 1994, 90, 1715.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkvVaitLs%3D&md5=da47e96d9ca59ffcc5d006c2029adbfeCAS |

[13]  J. C. Corchado, E. L. Coitiño, Y. Y. Chang, P. L. Fast, D. G. Truhlar, J. Phys. Chem. A 1998, 102, 2424.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhs1GqsLY%3D&md5=c507b6b63d26919d1052f11737f5d21dCAS |

[14]  J. C. Corchado, Y. Y. Chuang, P. L. Past, W. P. Hu, Y. P. Liu, G. C. Lynch, K. A. Nguyen, C. F. Jackels, A. Fernandez-Ramos, B. A. Ellingson, B. J. Lynch, J. J. Zheng, V. S. Melissas, J. Villa, I. Rossi, E. L. Coitiño, J. Z. Pu, T. V. Albu, R. Steckler, B. C. Garrett, A. D. Isaacson, D. G. Truhlar, POLYRATE, Version 9.7 2007 (University of Minnesota: Minneapolis, MN).

[15]  D. G. Truhlar, B. C. Garrett, Acc. Chem. Res. 1980, 13, 440.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXmt1Kgs74%3D&md5=c2392be08a0f15df3bf900b03715534eCAS |

[16]  D. G. Truhlar, A. D. Isaacson, B. C. Garrett, in The Theory of Chemical Reaction Dynamics 1985, p. 65 (Ed. M. Baer) (CRC Press: Boca Raton, FL).

[17]  D. G. Truhlar, B. C. Garrett, Annu. Rev. Phys. Chem. 1984, 35, 159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtlKisrY%3D&md5=566ed02bc2f495d67c00b6d09323fd25CAS |

[18]  H. S. Tam, J. H. Choe, M. D. Harmony, J. Phys. Chem. 1991, 95, 9267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmsVSisL0%3D&md5=99f53fd7b01e44354c663f0c8b7cd572CAS |

[19]  C. Flanagan, L. Pierce, J. Chem. Phys. 1963, 38, 2963.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXktFaqtb0%3D&md5=8aa8dccd40e7ec5a6731a5d2d4bb1282CAS |

[20]  NIST Chemistry Webbook (Eds P. J. Linstrom, W. G. Mallard) Available online at: http://webbook.nist.gov/chemistry.

[21]  T. Shimanouchi, Tables of Molecular Vibrational Frequencies Consolidated Volume I 1972 (National Bureau of Standards: Washington, DC).

[22]  I. M. Alecu, J. J. Zheng, Y. Zhao, D. G. Truhlar, J. Chem. Theory Comput. 2010, 6, 2872.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGrsb7E&md5=7ebda4d782b4cf2951cd8a017cb18150CAS |

[23]  W. B. DeMore, S. P. Sander, S. P. Golden, C. J. Howard, D. M. Golden, C. E. Kolb, R. F. Hampson, M. J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. JPL Publication 97-4 1997 (Jet Populsion Laboratory, NASA: Pasadena, CA).

[24]  Y. R. Luo, Comprehensive Handbook of Chemical Bond Energies 2007 (CRC Press: Boca Raton, FL).

[25]  J. J. Zheng, X. F. Xu, D. G. Truhlar, Theor. Chem. Acc. 2011, 128, 295.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFKrsQ%3D%3D&md5=68692c60197e7f7a0851892085d52659CAS |

[26]  Y. Y. Chuang, J. C. Corchado, D. G. Truhlar, J. Phys. Chem. 1999, 103, 2439.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhslers7k%3D&md5=bd8fb5f8a57552580d81a390b56dd3c8CAS |

[27]  B. C. Garrett, D. G. Truhlar, J. Chem. Phys. 1979, 70, 1593.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhslGgtro%3D&md5=0c8d1948ac1d902548d000fe261408e1CAS |

[28]  B. C. Garrett, D. G. Truhlar, J. Am. Chem. Soc. 1979, 101, 4534.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXltFejt7Y%3D&md5=64261b06ee124601d0e3e7d2dfebec4bCAS |

[29]  B. C. Garrett, D. G. Truhlar, R. S. Grev, A. W. Magnuson, J. Phys. Chem. 1980, 84, 1730.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXksFCrsLw%3D&md5=cd69711f50139bc2874fe364757b8b6bCAS |

[30]  D. H. Lu, T. N. Truong, V. S. Melissas, G. C. Lynch, Y. P. Liu, B. C. Garrett, R. Steckler, A. D. Issacson, S. N. Rai, G. C. Hancock, J. G. Lauderdale, T. Joseph, D. G. Truhlar, Comput. Phys. Commun. 1992, 71, 235.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmslOnsA%3D%3D&md5=073ed1c872145c0afb46f4f9dc38bd53CAS |

[31]  Y. P. Liu, G. C. Lynch, T. N. Truong, D. H. Lu, D. G. Truhlar, B. C. Garrett, J. Am. Chem. Soc. 1993, 115, 2408.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhs1ymsbc%3D&md5=6b2a3916280fb678a12e2b780a920ed0CAS |

[32]  J. A. Seetula, J. Chem. Soc., Faraday Trans. 1998, 94, 891.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvFWrt7c%3D&md5=2c0e4a7fa7cf04c5954001d07f9305b5CAS |

[33]  O. Dobis, S. W. Benson, J. Phys. Chem. A 1997, 101, 6030.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltFyntrk%3D&md5=ab78fd619795dec9e8f2a77fa88462a5CAS |

[34]  P. W. Seakins, M. J. Pilling, J. T. Niiranen, D. Gutman, L. N. Krasnoperov, J. Phys. Chem. 1992, 96, 9847.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtlegtL4%3D&md5=960ab987ffa351f70ab70b5aea2a1205CAS |

[35]  J. M. Nicovich, C. A. Van Dijk, K. D. Kreutter, P. H. Wine, J. Phys. Chem. 1991, 95, 9890.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmsl2iurg%3D&md5=ace6aba075663144a9d8a8eae288669bCAS |

[36]  J. J. Russell, J. A. Seetula, D. Gutman, J. Am. Chem. Soc. 1988, 110, 3092.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhvVGqsbc%3D&md5=8155b60eb75ec72d09ac90ca086aafc3CAS |

[37]  J. J. Zheng, D. G. Truhlar, Phys. Chem. Chem. Phys. 2010, 12, 7782.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosFaqsL0%3D&md5=a57ac7fb72af3e0a13a4431216f42269CAS |

[38]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr., J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.1 2009 (Gaussian, Inc.: Wallingford, CT).

[39]  B. J. Lynch, D. G. Truhlar, J. Phys. Chem. A 2001, 105, 2936.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhslSrtb0%3D&md5=eeafd8d6ab9421d8f6fe5ee2930eb428CAS |

[40]  A. D. Boese, J. M. L. Martin, J. Chem. Phys. 2004, 121, 3405.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1Kjtb4%3D&md5=ccf97a2f1114fef31247e53671792d32CAS |

[41]  K. Fukui, Acc. Chem. Res. 1981, 14, 363.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtFSgtL0%3D&md5=1e40ab9623931ccbf4cf6e86fa05eca5CAS |

[42]  A. M. Mebel, K. Morokuma, M. C. Lin, J. Chem. Phys. 1995, 103, 7414.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovFOqtbk%3D&md5=d79659f9461ef376cbb1b2a8d00d030bCAS |

[43]  C. F. Jackels, Z. Gu, D. G. Truhlar, J. Chem. Phys. 1995, 102, 3188.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjvFKltbw%3D&md5=ade1ea2b8f545ead37f06062cfa5462eCAS |

[44]  Y.-Y. Chuang, D. G. Truhlar, J. Phys. Chem. 1997, 101, 3808.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXislKgtLg%3D&md5=7b439ca87f30e9faed85f8b7c6fdd28fCAS |