Cancer Targeted Nanoparticles Specifically Induce Apoptosis in Cancer Cells and Spare Normal Cells
Jagat R. Kanwar A C , Rupinder K. Kanwar A , Ganesh Mahidhara A and Chun Hei Antonio Cheung BA Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (LIMBR), Centre for Biotechnology and Interdisciplinary Biosciences (BioDeakin), Institute for Technology & Research Innovation, Deakin University, Geelong, Technology Precinct, Pigdons Road, Waurn Ponds, Geelong, Victoria 3217, Australia.
B Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan R.O.C.
C Corresponding author. Email: jagat.kanwar@deakin.edu.au
Associate Professor Jagat R Kanwar is the Head of Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research. His group is currently working on drug discovery and nanomedicine for oral and systemic drug delivery of a range of biomacromolecules (proteins/peptides, siRNAs and aptamers) for targeting cancer, chronic inflammation and neurodegenerative disorders. He is the Editor, Reviewer and Editorial Advisory Board Member of more than 18 international journals. He has been an active member of various professional bodies including American Society of Nanomedicine, Australian Nanotechnology network. |
Dr Rupinder K Kanwar is a biomedical researcher with expertise in studying the molecular mechanisms and devising treatments for human chronic inflammatory diseases and cancer. She is key inventor in more than 20 published and live patents/applications and has 60 publications in high ranking journals including 5 book chapters. |
Ganesh Mahidhara has received a bachelorâs degree from Osmania University and did masters of Biotechnology from University of Hyderabad in 2006. He is currently pursuing PhD programme in ITRI, Deakin University, after obtaining international postgraduate research scholarship. His area of study is targeting solid tumours by using bio-degradable nano-therapeutics carrying natural anti-cancer proteins. |
Dr. Chun Hei Antonio Cheung received his Ph.D. degree from the University of Auckland, New Zealand, and then undertook his post-doctoral study at the National Health Research Institutes in Taiwan. He is currently an assistant professor in pharmacology at the National Cheng Kung University in Taiwan R.O.C. |
Australian Journal of Chemistry 65(1) 5-14 https://doi.org/10.1071/CH11372
Submitted: 19 September 2011 Accepted: 21 November 2011 Published: 19 January 2012
Abstract
Curing cancer is the greatest challenge for modern medicine and finding ways to minimize the adverse effects caused by chemotherapeutic agents is of importance in improving patient’s physical conditions. Traditionally, chemotherapy can induce various adverse effects, and these effects are mostly caused by the non-target specific properties of the chemotherapeutic compounds. Recently, the use of nanoparticles has been found to be capable of minimizing these drug-induced adverse effects in animals and in patients during cancer treatment. The use of nanoparticles allows various chemotherapeutic drugs to be targeted to cancer cells with lower dosages. In addition to this, the use of nanoparticles also allows various drugs to be administered to the subjects by an oral route. Here, locked nucleic acid (LNA)-modified epithelial cell adhesion molecules (EpCAM), aptamers (RNA nucleotide), and nucleolin (DNA nucleotide) aptamers have been developed and conjugated on anti-cancer drug-loaded nanocarriers for specific delivery to cancer cells and spare normal cells. Significant amounts of the drug loaded nanocarriers (92 ± 6 %) were found to distribute to the cancer cells at the tumour site and more interestingly, normal cells were unaffected in vitro and in vivo. In this review, the benefits of using nanoparticle-coated drugs in various cancer treatments are discussed. Various nanoparticles that have been tried in improving the target specificity and potency of chemotherapeutic compounds are also described.
References
[1] S. Aznavoorian, A. N. Murphy, W. G. Stetler-Stevenson, L. A. Liotta, Cancer 1993, 71, 1368.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktVGqsLc%3D&md5=53fdcf60db0ddaa5f093a3ba6e829eb7CAS |
[2] H. Koo, M. S. Huh, I. C. Sun, S. H. Yuk, K. Choi, K. Kim, Acc. Chem. Res. 2011, 44, 1018.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVelsr3L&md5=e5ff0743eebbf20a6cd16e58d8e428cdCAS |
[3] M. K. Ma, W. C. Zamboni, K. M. Radomski, W. L. Furman, V. M. Santana, P. J. Houghton, Clin. Cancer Res. 2000, 6, 3.
[4] J. Calvo, J. L. Lavandera, M. Agueros, J. M. Irache, Biomed. Microdevices 2011, 13, 1015.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVKhsr3M&md5=df6882299c0c824e6b057d9420fc4a28CAS |
[5] S. A. Galindo-Rodriguez, E. Allemann, H. Fessi, E. Doelker, Crit. Rev. Ther. Drug Carrier Syst. 2005, 22, 5.
| Crossref | GoogleScholarGoogle Scholar |
[6] A. F. Soares, A. Carvalho Rde, F. Veiga, Nanomedicine 2007, 2, 183.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVCjtbo%3D&md5=f5ec8c0957b12495a142dc65e02fab3bCAS |
[7] Y. Yamada, T. Yamaguchi, H. Matsumoto, Y. Ichikawa, A. Goto, K. Kato, Invest. New Drugs 2011, [Epub ahead of print].
| Crossref | GoogleScholarGoogle Scholar |
[8] B. Layek, B. Mukherjee, Sci. Pharm. 2010, 78, 507.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWls7zF&md5=af31a5b6812853d305b5e6d8c710fa2bCAS |
[9] J. Y. Lee, J. Y. Shin, H. S. Kim, J. I. Heo, Y. J. Kho, H. J. Kang, Oncol. Rep. 2011, 27, 87.
| Crossref | GoogleScholarGoogle Scholar |
[10] J. R. Kanwar, B. M. Long, R. K. Kanwar, Curr. Med. Chem. 2011, 18, 14.
| Crossref | GoogleScholarGoogle Scholar |
[11] J. R. Kanwar, N. Singh, R. K. Kanwar, Nanomedicine 2011, 6, 701.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsVajt78%3D&md5=013780f7cddfd156c4c66e187abd9ca1CAS |
[12] J. R. Kanwar, G. Mahidhara, R. K. Kanwar, Curr. Nanosci. 2009, 5, 4.
[13] J. R. Kanwar, G. Mahidhara, R. K. Kanwar, Drug Discov. Today 2011, 16, 5.
| Crossref | GoogleScholarGoogle Scholar |
[14] J. R. Kanwar, K. R. Roy, R. K. Kanwar, Crit. Rev. Biochem. Mol. Biol. 2011, 46, 6.
| Crossref | GoogleScholarGoogle Scholar |
[15] J. R. Kanwar, R. R. Mohan, R. K. Kanwar, K. Roy, R. Bawa, Nanomedicine 2010, 5, 1435.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFWjs7bN&md5=f3feccf9ecf96436570575426aa781b6CAS |
[16] J. R. Kanwar, G. Mahidhara, R. K. Kanwar, Front Biosci. (Schol. Ed). 2010, 2, 1113.
[17] J. R. Kanwar, R. W. Berg, Y. Yang, R. K. Kanwar, L. M. Ching, X. Sun, G. W. Krissansen, Cancer Gene Ther. 2003, 10, 468.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvF2lu74%3D&md5=0fdf7fa413c7e2a88b85d8941463d750CAS |
[18] X. Sun, M. Vale, E. Leung, J. R. Kanwar, R. Gupta, G. W. Krissansen, Gene Ther. 2003, 10, 20.
| Crossref | GoogleScholarGoogle Scholar |
[19] J. R. Kanwar, R. K. Kanwar, S. Pandey, L. M. Ching, G. W. Krissansen, Cancer Res. 2001, 61, 5.
[20] J. R. Kanwar, W. P. Shen, R. K. Kanwar, R. W. Berg, G. W. Krissansen, J. Natl. Cancer Inst. 2001, 93, 1541.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFyitbk%3D&md5=69530fb5e9bf339568381209af142cccCAS |
[21] J. Kanwar, R. Berg, K. Lehnert, G. Krissansen, Gene Ther. 1999, 6, 1835.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnt1Kjt74%3D&md5=c7479d50e11e91d89a1dc0b28aed433fCAS |
[22] S. Baratchi, R. K. Kanwar, K. Khoshmanesh, P. Vasu, C. Ashok, M. Hittu, Curr. Nanosci. 2009, 5, 15.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltlSntro%3D&md5=a6d5444b5346833e5204d530b7afd623CAS |
[23] S. S. Feng, L. Mu, K. Y. Win, G. Huang, Curr. Med. Chem. 2004, 11, 413.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFOrsr4%3D&md5=7f349943e158a0238521e5a2e7be406eCAS |
[24] S. Bisht, G. Feldmann, J. B. Koorstra, M. Mullendore, H. Alvarez, C. Karikari, M. A. Rudek, C. K. Lee, A. Maitra, A. Maitra, Mol. Cancer Ther. 2008, 7, 3878.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2iurfO&md5=edbfdb7ea06f7d7f034fed9c2d004413CAS |
[25] A. Mukerjee, J. K. Vishwanatha, Anticancer Res. 2009, 29, 10.
[26] H. Chen, Y. Zheng, G. Tian, Y. Tian, X. Zeng, G. Liu, Nanoscale Res. Lett. 2011, 6, 1.
| 1:CAS:528:DC%2BC3cXhs1WntbnN&md5=207a56ac112a629ec6d38a668d18183aCAS |
[27] V. Bhardwaj, D. D. Ankola, S. C. Gupta, M. Schneider, C. M. Lehr, M. N. Kumar, Pharm. Res. 2009, 26, 2495.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFartr%2FK&md5=b02674dd7a10b42b4aaf15ae5d2653f4CAS |
[28] K. Sonaje, J. L. Italia, G. Sharma, V. Bhardwaj, K. Tikoo, M. N. Kumar, Pharm. Res. 2007, 24, 899.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslWgt7s%3D&md5=05f20c8445d7c08a57ac203b630d25ccCAS |
[29] N. Klauber, S. Parangi, E. Flynn, E. Hamel, R. J. D’Amato, Cancer Res. 1997, 57, 1.
[30] O. Benny, O. Fainaru, A. Adini, F. Cassiola, L. Bazinet, I. Adini, E. Pravda, Y. Nahmias, S. Koirala, G. Korfas, R. J. D’Amato, J. Folkman, Nat. Biotechnol. 2008, 26, 799.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1entL8%3D&md5=c4b93c05ff8687f5450097fc2d0ca5a2CAS |
[31] P. F. Jiao, H. Y. Zhou, L. X. Chen, B. Yan, Curr Med Chem. 2011, 18, 14.
[32] S. R. Mudshinge, A. B. Deore, S. Patil, C. M. Bhalgat, Saudi Pharm. J. 2011, 19, 129.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1aju7jN&md5=20bd29d3af5b1e5b1d577683eb98aef1CAS |
[33] J. U. Junghanns, R. H. Muller, Int. J. Nanomed. 2008, 3, 3.
[34] K. Bowman, K. W. Leong, Int. J. Nanomed. 2006, 1, 117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWltbzM&md5=f48769a15ab2b5e7773218d211316c2cCAS |
[35] M. Mahmood, D. Casciano, Y. Xu, A. S. Biris, J. Appl. Toxicol. 2011, [Epub ahead of print].
| Crossref | GoogleScholarGoogle Scholar |
[36] S. Kamboj, S. Bala, A. B. Nair, Int. J. Pharm. Sci. Rev. Res. 2010, 5, 2.
[37] M. Agüeros, S. Espuelas, I. Esparza, P. Calleja, I. Penuelas, G. Ponchel, J. M. Irache, Expert Opin. Drug Deliv. 2011, 8, 721.
| Crossref | GoogleScholarGoogle Scholar |
[38] C. S. Brazel, Pharm. Res. 2009, 26, 644.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlKisLrN&md5=1601a391a2c1dcdb918671cc55cc3c6cCAS |
[39] K. Kim, J. H. Kim, H. Park, Y. S. Kim, K. Park, H. Nam, S. Lee, J. H. Park, R.-W. Park, I.-S. Kim, K. Choi, S. Y. Kim, K. Park, J. Controlled Release 2010, 146, 219.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVSnsbg%3D&md5=5a5adb786a0be92add57bc2d66fb46f0CAS |
[40] J. B. Share, Am. J. Ment. Defic. 1976, 80, 4.
[41] E. Dausse, S. Da Rocha Gomes, J. J. Toulme, Curr. Opin. Pharmacol. 2009, 9, 602.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1WntLbM&md5=29ec60d75cb2f966d0db632bbcbe421dCAS |
[42] J. R. Kanwar, R. K. Kanwar, Protein Pept. Lett. 2012, in press
[43] J. R. Kanwar, K. P. Palmano, X. Sun, R. K. Kanwar, R. Gupta, N. Haggarty, A. Rowan, S. Ram, G. W. Krissansen, Immunol. Cell. Biol. 2008, 86, 277.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsFChtLY%3D&md5=0a391e649143c5261f0febff68108f8fCAS |
[44] J. Kurreck, E. Wyszko, C. Gillen, V. A. Erdmann, Nucleic Acids Res. 2002, 30, 1911.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFGhtLY%3D&md5=4fecf58b2a348976b49f843acfa82c42CAS |
[45] S. Kauppinen, B. Vester, J. Wengel, Handbook of Experimental Pharmacology 2006, 173, 405.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivVWitLo%3D&md5=161cef90ef847a8b0c74866fa41e8cffCAS |
[46] D. J. Morrison, L. E. Hogan, G. Condos, T. Bhatla, N. Germino, N. P. Moskowitz, L. Lee, D. Bhojwani, T. M. Horton, I. Belitskaya-Levy, L. M. Greenberger, I. D. Horak, S. A. Grupp, D. T. Teachey, E. A. Raetz, W. L. Carroll, Leukemia 2011, [Epub ahead of print]
| Crossref | GoogleScholarGoogle Scholar |
[47] E. Park, E. J. Gang, Y. T. Hsieh, P. Schaefer, S. Chae, L. Klemm, S. Huantes, M. Loh, E. M. Conway, E. S. Kang, H. Hoe Koo, W. K. Hofmann, N. Heisterkamp, L. Pelus, G. Keerthivasan, J. Crispino, M. Kahn, M. Müschen, Y. M. Kim, Blood 2011, 118, 2191.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFGisrbJ&md5=f8c2e82d2944d8320df825082f43a6faCAS |
[48] S. Soundararajan, W. Chen, E. K. Spicer, N. Courtenay-Luck, D. J. Fernandes, Cancer Res. 2008, 68, 2358.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktV2jsrs%3D&md5=5e3c3d119e795c186db7e35e663342faCAS |
[49] S. Shigdar, J. Lin, Y. Yu, M. Pastuovic, M. Wei, W. Duan, Cancer Sci. 2011, 102, 991.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFehsLbL&md5=c3445bea51e14367ae0ccd428de9f13bCAS |
[50] K. M. Hertoghs, J. H. Ellis, I. R. Catchpole, Nucleic Acids Res. 2003, 31, 5817.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotVCltrY%3D&md5=efcbb2f3ff734cf19178dbd44545f4b8CAS |
[51] G. Mahidhara, R. K. Kanwar, J. R. Kanwar, Int. J. Nanotechnol. 2012, in press