Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Instability of Antibacterial Serrulatane Compounds from the Australian Plant Species Eremophila duttonii

Chi P. Ndi A B , Susan J. Semple A and Hans J. Griesser B C
+ Author Affiliations
- Author Affiliations

A Sansom Institute, University of South Australia, Adelaide, SA 5001, Australia.

B Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.

C Corresponding author. Email: hans.griesser@unisa.edu.au

Australian Journal of Chemistry 65(1) 20-27 https://doi.org/10.1071/CH11354
Submitted: 26 August 2011  Accepted: 3 October 2011   Published: 4 November 2011

Abstract

Hydrophilically substituted diterpenes of the structural class of serrulatanes have attracted attention as novel antibacterial compounds that are effective even against multidrug-resistant Staphylococcus aureus, a key bacterium involved in human infections. The mechanism of action has, however, not been established yet. Available data on structure–activity relationships suggest that the aromatic hydroxy group is essential for activity, and the strongest activity has been found for naphthyl compounds. In this context, it is reported that two highly active serrulatanes isolated from leaf resin of the Australian plant species Eremophila duttonii showed instability upon separation. Acetylation of hydroxy groups generated stable compounds that could be isolated and identified by NMR spectroscopy. The acetylated compounds showed little antibacterial activity, but such activity, as well as oxidative instability, was restored after hydrolysis of the acetate groups. Thus, phenolic hydroxy groups are essential for the mechanism of action of these compounds. The reaction products were not purifiable in sufficient quantities, but indications point to oxidation to quinones. Such oxidation may be a key aspect of the antibacterial activity of this class of compounds.


References

[1]  Q. Liu, D. Harrington, J. L. Kohen, S. Vemulpad, J. F. Jamie, Phytochemistry 2006, 67, 1256.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1OqtLs%3D&md5=1cdd4a80974464ed86be09247dcbe9aeCAS |

[2]  J. E. Smith, D. Tucker, K. Watson, G. L. Jones, J. Ethnopharmacol. 2007, 112, 386.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXls1WrsL8%3D&md5=2fe8861ccb51a4fdbb53f07034398201CAS |

[3]  C. P. Ndi, S. J. Semple, H. J. Griesser, S. M. Pyke, M. D. Barton, Phytochemistry 2007, 68, 2684.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1alsrnJ&md5=4e95057a5d99596bfa8ec150d761fde1CAS |

[4]  C. P. Ndi, S. J. Semple, H. J. Griesser, S. M. Pyke, M. D. Barton, J. Nat. Prod. 2007, 70, 1439.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWrsb%2FF&md5=51333358b35192279148ece7ffda4508CAS |

[5]  R. J. Chinnock, Eremophila and Allied Genera. A Monograph of the Myoporaceae 2007 (Rosenberg Publishing: Kenthurst, NSW, Australia).

[6]  A. Barr, Traditional Bush Medicine: An Aboriginal Pharmacopoeia 1988 (Greenhouse Publications: Richmond, Vic., Australia).

[7]  N. M. Smith, J. Adelaide Botanic Gardens 1991, 14, 1.

[8]  E. A. Palombo, S. J. Semple, J. Ethnopharmacol. 2001, 77, 151.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvptlWqtg%3D%3D&md5=16fcd8191a1b32727f1c473f2acb1a47CAS |

[9]  E. A. Palombo, S. J. Semple, J. Basic Microbiol. 2002, 42, 444.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  C. P. Ndi, S. J. Semple, H. J. Griesser, M. D. Barton, J. Basic Microbiol. 2007, 47, 158.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  J. Nowakowska, H. J. Griesser, C. Acikgoz, M. Textor, R. Landmann, N. Khanna, in Proc. eCM XII: Implant Infection 2011, Davos, Switzerland, June 22–24.

[12]  K. Drlica, X. L. Zhao, Microbiol. Mol. Biol. Rev. 1997, 61, 377.
         | 1:CAS:528:DyaK2sXmt1yhsL0%3D&md5=664be6167a9c59ef8d2d197109144d20CAS |

[13]  D. J. Dwyer, M. A. Kohanski, B. Hayete, J. J. Collins, Mol. Syst. Biol. 2007, 3, 91.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  O. Gordon, T. V. Slenters, P. S. Brunetto, A. E. Villaruz, D. E. Sturdevant, M. Otto, R. Landmann, K. M. Fromm, Antimicrob. Agents Ch. 2010, 54, 4208.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlegtr%2FN&md5=6ce021c41b70d62a2eb21206189ada6aCAS |

[15]  L. M. Tippett, R. A. Massy-Westropp, Phytochemistry 1993, 33, 417.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkvFWhu70%3D&md5=370ec4d8d43349963dbe7de1cf9a2e2aCAS |

[16]  A. Shah, R. F. Cross, E. A. Palombo, Phytother. Res. 2004, 18, 615.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  R. J. Owen, E. A. Palombo, Food Contr. 2007, 18, 387.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  E. L. Ghisalberti, Phytochemistry 1993, 35, 7.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  K. D. Croft, E. L. Ghisalberti, Aust. J. Chem. 1981, 34, 1951.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xjs1Gh&md5=93a51289c8173910673677417054b28aCAS |

[20]  P. G. Forster, E. L. Ghisalberti, P. R. Jefferies, V. M. Poletti, N. J. Whiteside, Phytochemistry 1986, 25, 1377.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XltFWqurY%3D&md5=95c3016d5c1725bb29e1e73c16a892f6CAS |

[21]  A. D. Abell, R. A. Massy-Westropp, Aust. J. Chem. 1985, 38, 1263.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtFWisb0%3D&md5=6713dd8efe62063366f2bd836e619ba0CAS |

[22]  A. D. Abell, E. Horn, G. P. Jones, M. R. Snow, R. A. Massy-Westropp, R. Riccio, Aust. J. Chem. 1985, 38, 1837.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhtVKhtLs%3D&md5=a2fab43c8f1ef0a8370a1217152864b4CAS |

[23]  W. D. Hamilton, R. J. Park, G. J. Ferry, M. D. Sutherland, Aust. J. Chem. 1973, 26, 375.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXnt1ersw%3D%3D&md5=0cc408e42857483e8a9c36dbd5b9574fCAS |

[24]  M. D. Sutherland, J. L. Rodwell, Aust. J. Chem. 1989, 42, 1995.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhtlGqurs%3D&md5=eb051a958770a5f00496c409de81847cCAS |

[25]  R. M. Carman, P. N. Handley, R. Kadirvelraj, W. T. Robinson, M. D. Sutherland, Aust. J. Chem. 1999, 52, 727.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntFKktrY%3D&md5=df94f18f08308072b38cc67aeca120afCAS |

[26]  C. Franck, J. Lammertyn, Q. T. Ho, P. Verboven, B. Verlinden, B. A. Nicolai, Postharvest Biol. Technol. 2007, 43, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvVyksQ%3D%3D&md5=3442fc19678cbd8e4e7aa7aebb87a374CAS |

[27]  S. Guyot, J. Vercauteren, V. Cheynier, Phytochemistry 1996, 42, 1279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xkt1SksLY%3D&md5=ad1229783ac68b90285b2312a6346e1eCAS |

[28]  N. Wuyts, D. De Waele, R. Swennen, Plant Physiol. Biochem. 2006, 44, 308.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xosl2js78%3D&md5=0beb1cd501dd9210e6cb2cd737f32499CAS |

[29]  M. A. Kohanski, D. J. Dwyer, B. Hayete, C. A. Lawrence, J. J. Collins, Cell 2007, 130, 797.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2ntL%2FP&md5=694ccd5892c9dac3860478df9aa6766cCAS |

[30]  NCCLS “Methods for Dilution Susceptibility Testing for Bacteria that Grows Aerobically.” Approved Standard M7-A6. NCCLS, Wayne, PA, 2003.

[31]  R. Verpoorte, E. Kos-Kuyck, A. Tsoi, C. L. M. Ruigrok, G. Dejong, A. B. Svendsen, Planta Med. 1983, 48, 283.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmsV2gsQ%3D%3D&md5=8cb5549fb0c52a654d46ce1663b2d895CAS |