Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Self-Assembly of Poly(l-glutamate)-block-poly(2-(diethylamino)ethyl methacrylate) in Aqueous Solutions

Angela M. H. Leung A , Vanessa Ng A , Yoon K. Ho B , Lihan Zhou B , Heng P. Too B and Kam C. Tam A C
+ Author Affiliations
- Author Affiliations

A Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1, Canada.

B Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.

C Corresponding author. Email: mkctam@uwaterloo.ca

Australian Journal of Chemistry 64(9) 1247-1255 https://doi.org/10.1071/CH11205
Submitted: 20 May 2011  Accepted: 16 June 2011   Published: 16 September 2011

Abstract

The self-assembly and gene delivery applications of poly(l-glutamate)-block-poly(2-(diethylamino)ethyl methacrylate) (PLG18-b-PDEAEMA37) were investigated. Owing to the functional groups on the polymer, an amine and a carboxylic acid group, the self-assembly process is dependent on the solution pH, where the critical micelle concentration was determined to be 61 and 320 μg mL–1 at high and low pH, respectively. The block copolymer forms positively charged vesicles at low pH with a hydrodynamic radius of 90 nm and negatively charged vesicles at high pH with a hydrodynamic radius of 50 nm. At the isoelectric point of 4.9, PLG-b-PDEAEMA was found to form larger micellar aggregates with a hydrodynamic radius of 180 nm because of the presence of both positive and negative charges. The complexation between PLG-b-PDEAEMA and DNA was studied at physiological pH as well as at low and high pH. DNA is condensed most effectively at pH 3, at an N/P ratio of 5, whereas at pH 7 and 10, an N/P ratio of 20 is required. However, in-vitro studies at physiological pH using neuroblastoma cells did not show substantial gene expression.


References

[1]  S. Forster, M. Antonietti, Adv. Mater. 1998, 10, 195.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  G. Riess, Prog. Polym. Sci. 2003, 28, 1107.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvVCnsbw%3D&md5=9c67763390060c3b1f8134e36d8eb54cCAS |

[3]  D. E. Discher, A. Eisenberg, Science 2002, 297, 967.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmt1Clsbs%3D&md5=4c5530e748fb93df3639179991e76d65CAS |

[4]  H. Schlaad, Adv. Polym. Sci. 2006, 202, 53.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Whtb4%3D&md5=8aa6517ca17006231f71669fcfe06863CAS |

[5]  J. Rodríguez-Hernándex, S. Lecommandoux, J. Am. Chem. Soc. 2005, 127, 2026.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  A. Toyotama, S.-I. Kugimiya, J. Yamanaka, M. Yonese, Chem. Pharm. Bull. 2001, 49, 169.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtVSit7o%3D&md5=73b1b4f6d8bb193824b82c085ed324c9CAS |

[7]  J.-B. Cheon, Y.-I. Jeong, C.-S. Cho, Korean Polym. J. 1998, 6, 34.
         | 1:CAS:528:DyaK1cXjslSmt7s%3D&md5=0d6f11acf9898fdb351d0f493ceca3c6CAS |

[8]  J.-B. Cheon, Y.-I. Jeong, C.-S. Cho, Polymer 1999, 40, 2041.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXpsVKrsg%3D%3D&md5=8a8be90e48768f4aae06ad4fd9fe670cCAS |

[9]  K. Naka, R. Yamashita, T. Nakamura, A. Ohki, S. Maeda, Macromol. Chem. Phys. 1997, 198, 89.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltFWntw%3D%3D&md5=65133cc25751db82092f2ea5b7c115f5CAS |

[10]  C.-M. Dong, X.-L. Sun, K. Faucher, R. Apkarian, E. Chaikof, Biomacromolecules 2004, 5, 224.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlOksb4%3D&md5=a9eab78c41a225c6c074fd4c198dabb3CAS |

[11]  A. Sinaga, T. A. Hatton, K. C. Tam, Macromolecules 2007, 40, 9064.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Oktb7L&md5=ce0464a2e770865c131883c13f37f3d0CAS |

[12]  A. Sinaga, T. A. Hatton, K. C. Tam, Biomacromolecules 2007, 8, 2801.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1Gisbg%3D&md5=48e354fe8fcbdf71e66768b8a630ee5fCAS |

[13]  H. Kukula, H. Schlaad, M. Antonietti, S. Forster, J. Am. Chem. Soc. 2002, 124, 1658.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht12nurw%3D&md5=3998b4a2ea39d9e96e335fb4e9258229CAS |

[14]  F. Checot, A. Brulet, J. Oberdisse, Y. Gnanou, O. Mondain-Monval, S. Lecommandoux, Langmuir 2005, 21, 4308.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXislWqtrc%3D&md5=a079c6814b3c7178da6d7d9661aa81b4CAS |

[15]  J. Babin, J. Rodriguez-Hernandez, S. Lecommandoux, H.-A. Klok, M.-F. Achard, Faraday Discuss. 2005, 128, 179.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvFWqsLY%3D&md5=5bf247b02460a6cade1adbbb5ce963cfCAS |

[16]  A. Lubbert, V. Castelletto, I. Hamley, H. Nuhn, M. Scholl, L. Bourdillon, C. Wandrey, H.-A. Klok, Langmuir 2005, 21, 6582.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  W. Agut, A. Brûlet, C. Schatz, D. Taton, S. Lecommandoux, Langmuir 2010, 26, 10546.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVGit70%3D&md5=fcd32f17a276e6a1ae9672b6db5f6f61CAS |

[18]  M. J. During, Adv. Drug Delivery Rev. 1997, 27, 83.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktlCrsbk%3D&md5=905c18c7d18ebff87d05bd3dd4f5a37eCAS |

[19]  R. G. Vile, A. Tuszynski, S. Castleden, Mol. Biotechnol. 1996, 5, 139.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xkt1SqsLs%3D&md5=b0930166b57656d2177730e78a73fcd7CAS |

[20]  D. W. Pack, A. S. Hoffman, S. Pun, P. S. Stayton, Nat. Rev. 2005, 4, 581.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsFGjtbo%3D&md5=31abf61b0d99e2f07b48c0ae446a4ec4CAS |

[21]  D. Putnam, Nat. Mater. 2006, 5, 439.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltFWrs7g%3D&md5=480f3baf8f6d59ce07043d37b8cc555eCAS |

[22]  R. Duncan, Nat. Rev. 2003, 2, 347.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslamtb0%3D&md5=e7e18bf3d68f2e71dbe0af86b51ef438CAS |

[23]  B. Le Bon, N. Van Craynest, O. Boussif, P. Vierling, Bioconjug. Chem. 2002, 13, 1292.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvFKkt7k%3D&md5=24a2dfac8416c902b4c6ff820e53125eCAS |

[24]  H. G. Hsiue, Z. H. Chinag, H. C. Wang, M. T. Juang, Bioconjug. Chem. 2006, 17, 781.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvFWks7g%3D&md5=66ea0e95cd4675f11f6a0fcf685aa351CAS |

[25]  W. Agut, D. Taton, S. Lecommandoux, Macromolecules 2007, 40, 5653.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmslyrtbo%3D&md5=1e44eb5e423cc269dd7e58de2a7fea30CAS |

[26]  E. R. Blout, R. H. Karlson, J. Am. Chem. Soc. 1956, 78, 941.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28XmvFWhsQ%3D%3D&md5=de39005396c6b03aa03f113da0c1e6b1CAS |

[27]  W. H. Daly, D. Poche, Tetrahedron Lett. 1988, 29, 5859.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlsFCgs7Y%3D&md5=0b5c7972bfec376a84c66706d7e73406CAS |

[28]  L. Cotarca, H. Eckert, Phosgenations 2004 (Wiley-VCH: Weinhem).

[29]  W. Vayaboury, O. Giani, H. Cottet, A. Deratani, F. Schué, Macromol. Rapid Commun. 2004, 25, 1221.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslentLY%3D&md5=c79dc52dc8b7328472d8d21a5f13b521CAS |

[30]  N. V. Tsarevsky, B. S. Sumerlin, K. Matyjaszewski, Macromolecules 2005, 38, 3558.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivFClsLk%3D&md5=03754ff2b1b458a2d05df9deac7c3743CAS |

[31]  C. D. Hein, X.-M. Liu, D. Wang, Pharm. Res. 2008, 25, 2216.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOru7%2FI&md5=980bdde11eff53610f7cff8def397090CAS |

[32]  E. He, P. Ravi, K. C. Tam, Langmuir 2007, 23, 2382.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFOntg%3D%3D&md5=6e137ea935057e1cb211cb3ca4cf369aCAS |

[33]  C. Wang, P. Ravi, K. C. Tam, L. H. Gan, J. Phys. Chem. B 2004, 108, 1621.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotFyh&md5=7ef7c1800b1a9c01c2c285682fbcc577CAS |

[34]  R. Finsy, Adv. Colloid Interface Sci. 1994, 52, 79.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvFCjug%3D%3D&md5=aaa1bf3f3abd9e173d7ca51f9f31003bCAS |

[35]  W. Burchard, Adv. Polym. Sci. 1983, 48, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhtVyjtr8%3D&md5=f759404b91bf6050185567644cd84e3fCAS |

[36]  D. F. Evans, H. Wennerstrom, The Colloial Domain Where Physics, Chemistry, Biology and Technology Meet, 2nd edn. 1999 (Wiley-VCH: New York, NY).

[37]  J. F. Gohy, S. Creutz, M. Garcia, B. Mahltig, M. Stamm, R. Jérôme, Macromolecules 2000, 33, 6378.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltlagsrc%3D&md5=b9b69395a6be0ccd0ffe2414b2a1bf4fCAS |

[38]  K. Seki, D. A. Tirrell, Macromolecules 1984, 17, 1692.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXltlWhsLk%3D&md5=3b1e226ae76d698e21a2156ef2d8ebc2CAS |

[39]  L. Wightman, R. Kircheis, V. Rossler, S. Carotta, R. Ruzicka, M. Kursa, E. Wagner, J. Gene Med. 2001, 3, 362.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3Mvoslagsw%3D%3D&md5=2ad28a12a7c7914611347fd63090f967CAS |

[40]  R. Kircheis, L. Wightman, E. Wagner, Adv. Drug Delivery Rev. 2001, 53, 341.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFyrtbk%3D&md5=38a7cdaebd523003e84bf7fbb78a1866CAS |