Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Investigative Study of Nucleic Acid-Gold Nanoparticle Interactions Using Laser-based Techniques, Electron Microscopy, and Resistive Pulse Sensing with a Nanopore

Michelle Low A , Sam Yu B , Ming Yong Han A and Xiaodi Su A C
+ Author Affiliations
- Author Affiliations

A Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, 117602, Singapore.

B MacDiarmid Institute for Advanced Materials and Nanotechnology, PO Box 20189, Bishopdale, Christchurch 8543, New Zealand.

C Corresponding author. Email: xd-su@imre.a-star.edu.sg

Australian Journal of Chemistry 64(9) 1229-1234 https://doi.org/10.1071/CH11200
Submitted: 15 May 2011  Accepted: 14 June 2011   Published: 16 September 2011

Abstract

In this study, we employ a range of analytical tools to study the interactions between a mixed base peptide nucleic acid (PNA, 22-mer) probe and gold nanoparticles (AuNP). The binding of charge neutral PNA to citrate capped AuNP (50 nm) causes the particles to change size and/or aggregation/dispersion status in a PNA concentration-dependent manner. Under a UV-vis spectrophotometer, AuNP aggregation can be detected at PNA concentrations as high as 400 nm. Using dynamic light scattering measurement, the changing of particle sizes can be detected at a relatively low PNA concentration of 50 nm. Using a resistive pulse sensor, i.e. nanopore-based sensing platform, a particle-by-particle measurement technique, subtle changes of the AuNP size induced by PNA at very low concentrations of 5 nm can be identified. Transmission electron microscopy measurement confirmed that at very low PNA concentration, a small population of particles form a nano-assembly of NP clusters. Based on the fact that hybridization of PNA probe with target DNA is able to retard particle aggregation, we can quantify specific DNA sequences with a limit of detection ranging from 10 nm to 1 nm, depending on the characterization tools used. With this study, we show that as a complementary technique, the resistive pulse nanopore-based sensing platform provides significant resolution advantages for metal nanoparticle measurement as compared with light-based techniques.


References

[1]  D. L. Feldheim, Metal Nanoparticles: Synthesis Characterization & Applications 1st edn 2001 (CRC: Boca Raton, FL).

[2]  M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, Chem. Rev. 2008, 108, 494.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOnu74%3D&md5=023582d8717c956cf0f4e7d21bb7b46eCAS |

[3]  C. S. Thaxton, D. G. Georganopoulou, C. A. Mirkin, Clin. Chim. Acta 2006, 363, 120.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlShsLrF&md5=c324159a157c69c4a0943871f4aa0db4CAS |

[4]  P. Baptista, E. Pereira, P. Eaton, G. Doria, A. Miranda, I. Gomes, P. Quaresma, R. Franc, Anal. Bioanal. Chem. 2008, 391, 943.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFKnsr0%3D&md5=e7c75fb085b6bbbcfe5b6c99a7038aa2CAS |

[5]  W. A. Zhao, M. A. Brook, Y. Li, Chem. Bio. Chem. 2008, 9, 2363.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12hsrzM&md5=13db0b0d9b47cf6aa3e0fa44848d90cfCAS |

[6]  K. Cho, Y. Lee, C.-H. Lee, K. Lee, Y. Kim, H. Choi, P.-D. Ryu, S. Y. Lee, S.-W. Joo, J. Phys. Chem. C 2008, 112, 8629.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFShur0%3D&md5=704784358710a3c13c77aa6890006732CAS |

[7]  Y. N. Tan, X. Su, Y. Zhu, J. Y. Lee, ACS Nano 2010, 4, 5101.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVWqt7bN&md5=d8a16e720b562fe6c98abda6d6c85254CAS |

[8]  J. Oishi, Y. Asami, T. Mori, J.-H. Kang, T. Niidome, Y. Katayama, Biomacromolecules 2008, 9, 2301.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptlaqtLo%3D&md5=6ea8ed4fe95bfd323049db9204e17963CAS |

[9]  N. Rupcich, W. Chiuman, R. Nutiu, S. Mei, K. K. Flora, Y. Li, J. D. Brennan, J. Am. Chem. Soc. 2006, 128, 780.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlars7vJ&md5=d23d28b01307ef64510fda7d260c27bfCAS |

[10]  J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. M. Mirkin, R. L. Letsinger, G. C. Schate, J. Am. Chem. Soc. 2000, 122, 4640.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXis1GntbY%3D&md5=f237bee89222bd80b84c7a283004d757CAS |

[11]  W. A. Zhao, W. Chiuman, J. C. F. Lam, S. A. McManus, W. Chen, Y. Cui, R. Pelton, M. A. Brook, Y. Li, J. Am. Chem. Soc. 2008, 130, 3610.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlCnurs%3D&md5=566a2439c169dda4e5ae005d5080b591CAS |

[12]  X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, Q. Huo, J. Am. Chem. Soc. 2008, 130, 2780.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsF2rtbc%3D&md5=d1fe441cd59078cd0d6c5c9109d4f046CAS |

[13]  G. F. Schneider, S. W. Kowalczyk, V. E. Calado, G. Pandraud, H. W. Zandbergen, L. M. K. Vandersypen, C. Dekker, Nano Lett. 2010, 10, 3163.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVyjt7w%3D&md5=0003df7b5ca7373bb62dc154256d5a17CAS |

[14]  C. A. Merchant, K. Healy, M. Wanunu, V. Ray, N. Peterman, J. Bartel, M. D. Fischbein, K. Venta, Z. Luo, A. T. Charlie Johnson, M. Drndić, Nano Lett. 2010, 10, 2915.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1Klt70%3D&md5=6ae8715cb1151c023df9afae68d559e9CAS |

[15]  S. M. Iqbal, D. Akin, R. Bashir, Nat. Nanotechnol. 2007, 2, 243.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktVGgsLc%3D&md5=95f75011234ced5eb484cef52fd4e3a8CAS |

[16]  S. van Dorp, U. F. Keyser, N. H. Dekker, C. Dekker, S. G. Lemay, Nat. Phys. 2009, 5, 347.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1Sksbc%3D&md5=654024dcd662509da4dc970e5582f160CAS |

[17]  A. Han, M. Creus, G. Schurmann, V. Linder, T. R. Ward, N. F. de Rooji, U. Staufer, Anal. Chem. 2008, 80, 4651.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslams7o%3D&md5=d70a55e7717b712cd27ca4fd207abff8CAS |

[18]  A. R. Hall, S. van Dorp, S. G. Lemay, C. Dekker, Nano Lett. 2009, 9, 4441.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFynsLfI&md5=a1827a5010009b93a8052eebb8b57d4aCAS |

[19]  N. C. Li, S. F. Yu, C. C. Harrell, C. R. Martin, Anal. Chem. 2004, 76, 2025.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslyqtrY%3D&md5=f9dbad558dd4b1e0267564e253674fbfCAS |

[20]  J. E. Wharton, P. Jin, L. T. Sexton, L. P. Horne, S. A. Sherrill, W. K. Mino, C. R. Martin, Small 2007, 3, 1424.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1ejs7w%3D&md5=3d239d779e3839775c10b65da39fbf87CAS |

[21]  G. R. Willmott, R. Vogel, S. S. C. Yu, L. G. Groenewegen, G. S. Roberts, D. Kozak, W. Anderson, M. Trau, J. Phys. Condens. Matter 2010, 22, 454116.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M3gvFyjtQ%3D%3D&md5=f7aee01d84cb67830adc4a45fc0a22f1CAS |

[22]  G. S. Roberts, D. Kozak, W. Anderson, M. F. Broom, R. Vogel, M. Trau, Small 2010, 6, 2653.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFaitr%2FL&md5=c295d4ec5c0c7958f6bb207b2928bce8CAS |

[23]  R. Vogel, G. Willmott, D. Kozak, G. S. Roberts, W. Anderson, L. Groenewegen, B. Glossop, A. Barnett, A. Turner, M. Trau, Anal. Chem. 2011, 83, 3499.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFant7g%3D&md5=94c5d0708141e39ebbefcbcb88634018CAS |

[24]  M. Ayub, A. Ivanov, E. Instuli, M. Cecchini, G. Chansin, C. McGilvery, J. Hong, G. Baldwin, D. McCpmb, J. S. Edel, T. Albrecht, Electrochim. Acta 2010, 55, 8237.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlahsr7J&md5=ec5c1aa20e81342f623136e99a947857CAS |

[25]  X. D. Su, R. Kanjanawarut, ACS Nano 2009, 3, 2751.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVClsr3K&md5=b253b69a831a99212e1a4c343abfecfcCAS |

[26]  R. Kanjanawarut, X. D. Su, Anal. Chem. 2009, 81, 6122.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVGkur0%3D&md5=45e394bd9867a360e758f0cadd9f9d61CAS |

[27]  R. R. Henriquez, T. Ito, L. Sun, R. M. Crooks, Analyst 2004, 129, 478.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVOqsr4%3D&md5=04927f1c506c74c4410320c0c2d4112dCAS |