Peptide Isomerization Induced by pH Change Regulates the S1 Binding Site in Ficolins
Lifeng Yang A B , Jing Zhang B C and Jeak Ling Ding A B DA Computational and Systems Biology, Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore 117576.
B Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.
C NUS Graduate School for Integrative Science and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117543.
D Corresponding author. Email: dbsdjl@nus.edu.sg
Australian Journal of Chemistry 64(7) 887-893 https://doi.org/10.1071/CH11050
Submitted: 28 January 2011 Accepted: 1 April 2011 Published: 19 July 2011
Abstract
Infection-inflammation mediated interactions between human ficolin and the pathogen GlcNAc is associated with local acidosis, leading to antimicrobial action. Therefore, revealing the precise molecular conformation induced by pH-shift is crucial in understanding the immune response. Here, we performed constant-pH molecular dynamics simulations on the L-ficolin fibrinogen-like domain over pH 4.5–9. An unusual cis-Asn244-Cys245 peptide bond prevailed over the pH range in the S1 binding site. Analysis of the hydrogen-bond network at S1 suggested Asn244 to be indispensible for maintaining the cis form of Asn244-Cys245, and the absence of the hydroxyl group on Phe262 accounts for the lack of GlcNAc binding.
References
[1] T. Fujita, Nat. Rev. Immunol. 2002, 2, 346.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjsl2rs78%3D&md5=a3040aaa82130466ba290f4e4ca9f74dCAS |
[2] T. Fujita, M. Matsushita, Y. Endo, Immunol. Rev. 2004, 198, 185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs1yjsrw%3D&md5=10467de99540422d5493d4941871031dCAS |
[3] V. L. Runza, W. Schwaeble, D. N. Männel, Immunobiology 2008, 213, 297.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVGmsbk%3D&md5=1477a4abb26861e374c9ef4c2dfdde53CAS |
[4] C. Teh, Y. Le, S. H. Lee, J. Lu, Immunology 2000, 101, 225.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1aqtL4%3D&md5=97d745056857fc8848ed4d07c2d27f48CAS |
[5] M. Matsushita, T. Fujita, Immunol. Rev. 2001, 180, 78.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFegs70%3D&md5=a939b618b063d5f42f00675ea70f7e3dCAS |
[6] V. Garlatti, L. Martin, E. Gout, J. B. Reiser, T. Fujita, G. J. Arlaud, N. M. Thielens, C. Gaboriaud, J. Biol. Chem. 2007, 282, 35814.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKrsb3K&md5=5976db50c48b015f74b6e64e6506db88CAS |
[7] Y. Endo, Y. Sato, M. Matsushita, T. Fujita, Genomics 1996, 36, 515.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvFWrtLc%3D&md5=97ac03a9f2130c2a1a84eac40586a044CAS |
[8] R. Sugimoto, Y. Yae, M. Akaiwa, S. Kitajima, Y. Shibata, H. Sato, J. Hirata, K. Okochi, K. Izuhara, N. Hamasaki, J. Biol. Chem. 1998, 273, 20721.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsFOkur4%3D&md5=ce766f0c987272cfa14f0547c25fbf28CAS |
[9] V. Garlatti, N. Belloy, L. Martin, M. Lacroix, M. Matsushita, Y. Endo, T. Fujita, J. C. Fontecilla-Camps, G. J. Arlaud, N. M. Thielens, C. Gaboriaud, EMBO J. 2007, 26, 623.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFKgtg%3D%3D&md5=1ebc8820993a746a6b3800d90e449aebCAS |
[10] S. Thiel, Mol. Immunol. 2007, 44, 3875.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsl2htrg%3D&md5=849aebe86640e9bd991216cd788f4f92CAS |
[11] Y. Endo, M. Matsushita, T. Fujita, Immunobiology 2007, 212, 371.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvFCmurw%3D&md5=2ce7973b978ea063baf3a7e4ead57e14CAS |
[12] L. Marnell, C. Mold, T. W. Du Clos, Clin. Immunol. 2005, 117, 104.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVyms7vE&md5=4fb8ee90cff5f9737ad338582d095f12CAS |
[13] J. Zhang, J. Koh, J. Lu, S. Thiel, B. S. H. Leong, S. Sethi, C. Y. X. He, B. Ho, J. L. Ding, PLoS Pathog. 2009, 5, 1.
[14] P. M. Ng, A. Le Saux, C. M. Lee, N. S. Tan, J. Lu, S. Thiel, B. Ho, J. L. Ding, EMBO J. 2007, 26, 3431.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFaisrk%3D&md5=956fa46fcb6a26ab3feaf786ad0723aaCAS |
[15] J. Zhang, L. Yang, Z. Ang, S. L. Yoong, T. T. T. Tran, G. S. Anand, N. S. Tan, B. Ho, J. L. Ding, J. Immunol. 2010, 185, 6899.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVaqt7bO&md5=2288d49fb54c6be04c3f290f55de5cf0CAS |
[16] B. Liu, J. Zhang, P. Y. Tan, D. Hsu, A. M. Blom, B. Leong, S. Sethi, B. Ho, J. L. Ding, P. S. Thiagarajan, PLOS Comput. Biol. 2011, 7, 1.
| 1:CAS:528:DC%2BC3MXhs1Oqu7g%3D&md5=4e09fb5361cbbf86e0b01748ed629f06CAS |
[17] M. Tanio, S. Kondo, S. Sugio, T. Kohno, J. Synchrotron Radiat. 2008, 15, 243.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksl2qtrc%3D&md5=d44f66efe4ddeefcfbe30487d0514274CAS |
[18] M. Tanio, T. Kohno, Biochem. J. 2009, 417, 485.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCisb7M&md5=81d27084c76d1c9cc534a0a61f7da580CAS |
[19] M. Tanio, S. Kondo, S. Sugio, T. Kohno, J. Biol. Chem. 2007, 282, 3889.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Kquro%3D&md5=e7f5d8934c6afcaca2e7766ad31205c3CAS |
[20] E. Gout, V. Garlatti, D. F. Smith, M. Lacroix, C. Dumestre-Perard, T. Lunardi, L. Martin, J. Y. Cesbron, G. J. Arlaud, C. Gaboriaud, N. M. Thielens, J. Biol. Chem. 2010, 285, 6612.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1aisbY%3D&md5=52c1649ab74644bfe038ff30ce3f1a8cCAS |
[21] J. Mongan, D. A. Case, J. A. McCammon, J. Comput. Chem. 2004, 25, 2038.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvVylsb0%3D&md5=dc204c0d9123b370cd3e6d8661124a25CAS |
[22] U. Börjesson, P. H. Hünenberger, J. Chem. Phys. 2001, 114, 9706.
| Crossref | GoogleScholarGoogle Scholar |
[23] A. M. Baptista, J. Chem. Phys. 2002, 116, 7766.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtVOku7w%3D&md5=b8c3d9572e87859dc479616a87f96519CAS |
[24] U. Börjesson, P. H. Hünenberger, J. Phys. Chem. B 2004, 108, 13551.
| Crossref | GoogleScholarGoogle Scholar |
[25] J. Khandogin, C. L. Brooks, Biophys. J. 2005, 89, 141.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVShsbg%3D&md5=80a4337c48aacf47b0a8f7e6894b3902CAS |
[26] J. Mongan, D. A. Case, Curr. Opin. Struct. Biol. 2005, 15, 157.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtlaltb8%3D&md5=a76bafbd8042ab8711b6da467af42e79CAS |
[27] J. Khandogin, C. L. Brooks, Proc. Natl. Acad. Sci. USA 2007, 104, 16880.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1KgtLjJ&md5=8368cb84575cace2e040ab5dd14b61d2CAS |
[28] J. Chen, C. L. Brooks, J. Khandogin, Curr. Opin. Struct. Biol. 2008, 18, 140.
| 1:CAS:528:DC%2BD1cXkvFCmu7Y%3D&md5=e6ab3fafee28e4d393423a22c917e423CAS |
[29] H. Tjong, H. X. Zhou, Biophys. J. 2008, 95, 2601.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVyktrrM&md5=23cd15fb27027ff5ecbeb76e87a18fa5CAS |
[30] M. Machuqueiro, A. M. Baptista, J. Am. Chem. Soc. 2009, 131, 12586.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSis7jI&md5=49519f8dea7b5ed46ca607451d8f1ddbCAS |
[31] Y. Meng, A. E. Roitberg, J. Chem. Theory Comput. 2010, 6, 1401.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVygsbY%3D&md5=fc30818ca31f3fc4631c5acba589e0c2CAS |
[32] A. M. Baptista, V. H. Teixeira, C. M. Soares, J. Chem. Phys. 2002, 117, 4184.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVKisrw%3D&md5=2b33338cfa6617b665d703f0c0554498CAS |
[33] J. Kyte, Structure in Protein Chemistry 1995 (Garland Publishing: New York & London).
[34] D. A. Case, T. A. Darden, I. T. E. Cheatham, C. L. Simmerling, J. Wang, R. E. Duke, R. Luo, M. Crowley, R. C. Walker, W. Zhang, K. M. Merz, B. Wang, S. Hayik, A. Roitberg, G. Seabra, I. Kolossváry, K. F. Wong, F. Paesani, J. Vanicek, X. Wu, S. R. Brozell, T. Steinbrecher, H. Gohlke, L. Yang, C. Tan, J. Mongan, V. Hornak, G. Cui, D. H. Mathews, M. G. Seetin, C. Sagui, V. Babin, P. A. Kollman, in AMBER 10 2008 (University of California: San Francisco).