Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Peptide Isomerization Induced by pH Change Regulates the S1 Binding Site in Ficolins

Lifeng Yang A B , Jing Zhang B C and Jeak Ling Ding A B D
+ Author Affiliations
- Author Affiliations

A Computational and Systems Biology, Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore 117576.

B Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.

C NUS Graduate School for Integrative Science and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117543.

D Corresponding author. Email: dbsdjl@nus.edu.sg

Australian Journal of Chemistry 64(7) 887-893 https://doi.org/10.1071/CH11050
Submitted: 28 January 2011  Accepted: 1 April 2011   Published: 19 July 2011

Abstract

Infection-inflammation mediated interactions between human ficolin and the pathogen GlcNAc is associated with local acidosis, leading to antimicrobial action. Therefore, revealing the precise molecular conformation induced by pH-shift is crucial in understanding the immune response. Here, we performed constant-pH molecular dynamics simulations on the L-ficolin fibrinogen-like domain over pH 4.5–9. An unusual cis-Asn244-Cys245 peptide bond prevailed over the pH range in the S1 binding site. Analysis of the hydrogen-bond network at S1 suggested Asn244 to be indispensible for maintaining the cis form of Asn244-Cys245, and the absence of the hydroxyl group on Phe262 accounts for the lack of GlcNAc binding.


References

[1]  T. Fujita, Nat. Rev. Immunol. 2002, 2, 346.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjsl2rs78%3D&md5=a3040aaa82130466ba290f4e4ca9f74dCAS |

[2]  T. Fujita, M. Matsushita, Y. Endo, Immunol. Rev. 2004, 198, 185.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs1yjsrw%3D&md5=10467de99540422d5493d4941871031dCAS |

[3]  V. L. Runza, W. Schwaeble, D. N. Männel, Immunobiology 2008, 213, 297.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVGmsbk%3D&md5=1477a4abb26861e374c9ef4c2dfdde53CAS |

[4]  C. Teh, Y. Le, S. H. Lee, J. Lu, Immunology 2000, 101, 225.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1aqtL4%3D&md5=97d745056857fc8848ed4d07c2d27f48CAS |

[5]  M. Matsushita, T. Fujita, Immunol. Rev. 2001, 180, 78.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFegs70%3D&md5=a939b618b063d5f42f00675ea70f7e3dCAS |

[6]  V. Garlatti, L. Martin, E. Gout, J. B. Reiser, T. Fujita, G. J. Arlaud, N. M. Thielens, C. Gaboriaud, J. Biol. Chem. 2007, 282, 35814.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKrsb3K&md5=5976db50c48b015f74b6e64e6506db88CAS |

[7]  Y. Endo, Y. Sato, M. Matsushita, T. Fujita, Genomics 1996, 36, 515.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvFWrtLc%3D&md5=97ac03a9f2130c2a1a84eac40586a044CAS |

[8]  R. Sugimoto, Y. Yae, M. Akaiwa, S. Kitajima, Y. Shibata, H. Sato, J. Hirata, K. Okochi, K. Izuhara, N. Hamasaki, J. Biol. Chem. 1998, 273, 20721.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsFOkur4%3D&md5=ce766f0c987272cfa14f0547c25fbf28CAS |

[9]  V. Garlatti, N. Belloy, L. Martin, M. Lacroix, M. Matsushita, Y. Endo, T. Fujita, J. C. Fontecilla-Camps, G. J. Arlaud, N. M. Thielens, C. Gaboriaud, EMBO J. 2007, 26, 623.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFKgtg%3D%3D&md5=1ebc8820993a746a6b3800d90e449aebCAS |

[10]  S. Thiel, Mol. Immunol. 2007, 44, 3875.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsl2htrg%3D&md5=849aebe86640e9bd991216cd788f4f92CAS |

[11]  Y. Endo, M. Matsushita, T. Fujita, Immunobiology 2007, 212, 371.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvFCmurw%3D&md5=2ce7973b978ea063baf3a7e4ead57e14CAS |

[12]  L. Marnell, C. Mold, T. W. Du Clos, Clin. Immunol. 2005, 117, 104.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVyms7vE&md5=4fb8ee90cff5f9737ad338582d095f12CAS |

[13]  J. Zhang, J. Koh, J. Lu, S. Thiel, B. S. H. Leong, S. Sethi, C. Y. X. He, B. Ho, J. L. Ding, PLoS Pathog. 2009, 5, 1.

[14]  P. M. Ng, A. Le Saux, C. M. Lee, N. S. Tan, J. Lu, S. Thiel, B. Ho, J. L. Ding, EMBO J. 2007, 26, 3431.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFaisrk%3D&md5=956fa46fcb6a26ab3feaf786ad0723aaCAS |

[15]  J. Zhang, L. Yang, Z. Ang, S. L. Yoong, T. T. T. Tran, G. S. Anand, N. S. Tan, B. Ho, J. L. Ding, J. Immunol. 2010, 185, 6899.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVaqt7bO&md5=2288d49fb54c6be04c3f290f55de5cf0CAS |

[16]  B. Liu, J. Zhang, P. Y. Tan, D. Hsu, A. M. Blom, B. Leong, S. Sethi, B. Ho, J. L. Ding, P. S. Thiagarajan, PLOS Comput. Biol. 2011, 7, 1.
         | 1:CAS:528:DC%2BC3MXhs1Oqu7g%3D&md5=4e09fb5361cbbf86e0b01748ed629f06CAS |

[17]  M. Tanio, S. Kondo, S. Sugio, T. Kohno, J. Synchrotron Radiat. 2008, 15, 243.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksl2qtrc%3D&md5=d44f66efe4ddeefcfbe30487d0514274CAS |

[18]  M. Tanio, T. Kohno, Biochem. J. 2009, 417, 485.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCisb7M&md5=81d27084c76d1c9cc534a0a61f7da580CAS |

[19]  M. Tanio, S. Kondo, S. Sugio, T. Kohno, J. Biol. Chem. 2007, 282, 3889.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Kquro%3D&md5=e7f5d8934c6afcaca2e7766ad31205c3CAS |

[20]  E. Gout, V. Garlatti, D. F. Smith, M. Lacroix, C. Dumestre-Perard, T. Lunardi, L. Martin, J. Y. Cesbron, G. J. Arlaud, C. Gaboriaud, N. M. Thielens, J. Biol. Chem. 2010, 285, 6612.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1aisbY%3D&md5=52c1649ab74644bfe038ff30ce3f1a8cCAS |

[21]  J. Mongan, D. A. Case, J. A. McCammon, J. Comput. Chem. 2004, 25, 2038.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvVylsb0%3D&md5=dc204c0d9123b370cd3e6d8661124a25CAS |

[22]  U. Börjesson, P. H. Hünenberger, J. Chem. Phys. 2001, 114, 9706.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  A. M. Baptista, J. Chem. Phys. 2002, 116, 7766.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtVOku7w%3D&md5=b8c3d9572e87859dc479616a87f96519CAS |

[24]  U. Börjesson, P. H. Hünenberger, J. Phys. Chem. B 2004, 108, 13551.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  J. Khandogin, C. L. Brooks, Biophys. J. 2005, 89, 141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVShsbg%3D&md5=80a4337c48aacf47b0a8f7e6894b3902CAS |

[26]  J. Mongan, D. A. Case, Curr. Opin. Struct. Biol. 2005, 15, 157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtlaltb8%3D&md5=a76bafbd8042ab8711b6da467af42e79CAS |

[27]  J. Khandogin, C. L. Brooks, Proc. Natl. Acad. Sci. USA 2007, 104, 16880.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1KgtLjJ&md5=8368cb84575cace2e040ab5dd14b61d2CAS |

[28]  J. Chen, C. L. Brooks, J. Khandogin, Curr. Opin. Struct. Biol. 2008, 18, 140.
         | 1:CAS:528:DC%2BD1cXkvFCmu7Y%3D&md5=e6ab3fafee28e4d393423a22c917e423CAS |

[29]  H. Tjong, H. X. Zhou, Biophys. J. 2008, 95, 2601.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVyktrrM&md5=23cd15fb27027ff5ecbeb76e87a18fa5CAS |

[30]  M. Machuqueiro, A. M. Baptista, J. Am. Chem. Soc. 2009, 131, 12586.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSis7jI&md5=49519f8dea7b5ed46ca607451d8f1ddbCAS |

[31]  Y. Meng, A. E. Roitberg, J. Chem. Theory Comput. 2010, 6, 1401.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVygsbY%3D&md5=fc30818ca31f3fc4631c5acba589e0c2CAS |

[32]  A. M. Baptista, V. H. Teixeira, C. M. Soares, J. Chem. Phys. 2002, 117, 4184.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVKisrw%3D&md5=2b33338cfa6617b665d703f0c0554498CAS |

[33]  J. Kyte, Structure in Protein Chemistry 1995 (Garland Publishing: New York & London).

[34]  D. A. Case, T. A. Darden, I. T. E. Cheatham, C. L. Simmerling, J. Wang, R. E. Duke, R. Luo, M. Crowley, R. C. Walker, W. Zhang, K. M. Merz, B. Wang, S. Hayik, A. Roitberg, G. Seabra, I. Kolossváry, K. F. Wong, F. Paesani, J. Vanicek, X. Wu, S. R. Brozell, T. Steinbrecher, H. Gohlke, L. Yang, C. Tan, J. Mongan, V. Hornak, G. Cui, D. H. Mathews, M. G. Seetin, C. Sagui, V. Babin, P. A. Kollman, in AMBER 10 2008 (University of California: San Francisco).