Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Higher Order Acenes and Fused Acenes with Near-infrared Absorption and Emission

Zhe Sun A and Jishan Wu A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.

B Corresponding author. Email: chmwuj@nus.edu.sg




Zhe Sun was born in Shandong province, P. R. China in 1987. He received his bachelor degree in Chemistry from Sichuan University and he joined National University of Singapore as a Ph.D. student in 2009. He is currently working on the design and synthesis of novel polycyclic aromatic systems as near-infrared dyes and opto-electronic materials under the supervision of Dr. Jishan Wu.



Dr. Jishan Wu received a bachelor degree in Chemistry from Wuhan University (1997) and a Masters degree in Polymer Sciences from Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (2000). He did his Ph.D. research in the Max-Planck Institute for Polymer Research under the supervision of Professor Klaus Müllen (2000–2004) and after graduation he worked as a project leader in the same group. He moved to the University of California at Los Angeles in 2005 and worked with Professor Sir J. Fraser Stoddart on supramolecular chemistry. He joined the Department of Chemistry of the National University of Singapore in 2007 as an Assistant Professor. His current research interests include: (1) near infrared dyes for solar cells and bio-imaging; (2) conjugated polymers and discotic liquid crystals for printed electronics; (3) carbon-based materials for energy storage devices; and (4) supramolecular chemistry. Dr Wu has published more than 80 peer-reviewed articles and book chapters. He received NUS Young Investigator Award (2007) and Singapore National Young Scientist Award (2010).

Australian Journal of Chemistry 64(5) 519-528 https://doi.org/10.1071/CH11037
Submitted: 22 January 2011  Accepted: 15 February 2011   Published: 30 May 2011

Abstract

Higher order acenes and fused acenes represent two outstanding classes of building blocks to achieve near-infrared absorbing and emitting materials. Appropriate chemical modification and functionalization will lead to significant improvements in solubility and stability, thus making their applications practically possible. This short review summarizes the recent developments of the two types of polycyclic aromatic compounds mentioned above based on their physical and optical properties including absorption, emission, quantum yield, solubility, and stability.


References

[1]  J. Fabian, Chem. Rev. 1992, 92, 1197.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlsFakt7k%3D&md5=cf0ba82150eab468ffabb317250ac39aCAS |

[2]  G. Qian, Z. Y. Wang, Chem. Asian J. 2010, 5, 1006.
         | 1:CAS:528:DC%2BC3cXls1Wktbw%3D&md5=75be9d1999bc0f531581f9db45c5db1bCAS | 20352644PubMed |

[3]  C. Jiao, J. Wu, Curr. Org. Chem. 2010, 14, 2145.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFartr%2FP&md5=6660ad8569af019c8dc30d5233d493b2CAS |

[4]  D. Désilets, P. M. Kazmaier, R. A. Burt, Can. J. Chem. 1995, 73, 319.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  J. H. Yao, C. Chi, J. Wu, K. P. Loh, Chem. Eur. J. 2009, 15, 9299.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGlu7fP&md5=6e59c3ffb4bed87c37c676d4b6caac8fCAS |

[6]  M. Adachi, Y. Nagao, Chem. Mater. 2001, 13, 662.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmslSgsA%3D%3D&md5=93daeea5c41a3af1cebe5a923dd86594CAS |

[7]  J. E. Anthony, Chem. Rev. 2006, 106, 5028.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Ghs73N&md5=a356c9b8ca3c8e11333cc0b661e3ec32CAS | 17165682PubMed |

[8]  J. E. Anthony, Angew. Chem. Int. Ed. 2008, 47, 452.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptlOhtA%3D%3D&md5=efc255bc0f9dbdb8f522acc855f3a811CAS |

[9]  H. Qu, C. Chi, Curr. Org. Chem. 2010, 14, 2070.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFartr7L&md5=5744e632f0da844630142a40192b5fd5CAS |

[10]  M. Bendikov, H. M. Duong, K. Starkey, K. N. Houk, E. A. Carter, F. Wudl, J. Am. Chem. Soc. 2004, 126, 7416.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvFSgtLs%3D&md5=ea93022cc1992a8aa44e71167f44077cCAS | 15198569PubMed |

[11]  C. Marschalk, Bull. Soc. Chim. Fr. 1939, 6, 1112.
         | 1:CAS:528:DyaA1MXltFShsA%3D%3D&md5=638e578f9ac406b1b6ba56031cb978e2CAS |

[12]  E. Clar, Ber. Dtsch. Chem. Ges. B 1939, 72, 2137.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  M. P. Satchell, B. E. Stacey, J. Chem. Soc. C 1971, 468.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  H. Angliker, E. Rommel, J. Wirz, Chem. Phys. Lett. 1982, 87, 208.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xit1Gktrs%3D&md5=7bf5320b322b3f21b26738a3c0bac069CAS |

[15]  E. Clar, Chem. Ber. 1942, 75B, 1330.
         | 1:CAS:528:DyaH3sXivFCjsw%3D%3D&md5=b8a56e5aa9faf8a8bcdddcf8136e63e0CAS |

[16]  C. Marschalk, Bull. Soc. Chim. Fr. 1941, 8, 354.
         | 1:CAS:528:DyaH38XotFKr&md5=32abf8b84bb8a54aa90570eaf73f72b3CAS |

[17]  C. Marschalk, Bull. Soc. Chim. Fr. 1943, 10, 511.
         | 1:CAS:528:DyaH2cXivFSrsw%3D%3D&md5=6fdbd6f478fdad39f0ec1df53b53a47aCAS |

[18]  R. Mondal, B. K. Shah, D. C. Neckers, J. Am. Chem. Soc. 2006, 128, 9612.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFaqt78%3D&md5=009a321c334f0c2862fb87cadab0d8ebCAS | 16866498PubMed |

[19]  R. Mondal, C. Tonshoff, D. Khon, D. C. Neckers, H. F. Bettinger, J. Am. Chem. Soc. 2009, 131, 14281.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCjtr3E&md5=638aff26b723241862c46e47b8110186CAS | 19757812PubMed |

[20]  H. F. Bettinger, R. Mondal, D. C. Neckers, Chem. Commun. 2007, 5209.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtl2gs77O&md5=9e1cdfdb4e0ed1ebd485704e8354bc38CAS |

[21]  C. Tonshoff, H. F. Bettinger, Angew. Chem. Int. Ed. 2010, 49, 4125.

[22]  N. Nijegorodov, V. Ramachandran, D. P. Winkoun, Spectrochim. Acta A 1997, 53, 1813.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  J. Hachmann, J. J. Dorando, M. Avilés, G. K.-L. Chan, J. Chem. Phys. 2007, 127, 134309.
         | Crossref | GoogleScholarGoogle Scholar | 17919026PubMed |

[24]  D. Jiang, S. Dai, J. Phys. Chem. A 2008, 112, 332.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVehurrN&md5=848ab2ffc2217b71f0585b10245ffbb4CAS | 18085758PubMed |

[25]  Z. Qu, D. Zhang, C. Liu, Y. Jiang, J. Phys. Chem. A 2009, 113, 7909.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1Cnurg%3D&md5=c3103bfc22ca06b1cf9b2b2d0d74925dCAS | 19527036PubMed |

[26]  K. N. Houk, P. S. Lee, M. Nendel, J. Org. Chem. 2001, 66, 5517.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltVCmu7k%3D&md5=9d16815bb7e335acfcab6f24cb57a800CAS | 11485476PubMed |

[27]  M. M. Payne, S. R. Parkin, J. E. Anthony, J. Am. Chem. Soc. 2005, 127, 8028.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFCgt7w%3D&md5=f6b98e7b1887ac284c84802bf0896600CAS | 15926823PubMed |

[28]  D. Chun, Y. Cheng, F. Wudl, Angew. Chem. Int. Ed. 2008, 47, 8380.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlKqt7zO&md5=134a31ba363b1c9c94a251b9fa6dc5c2CAS |

[29]  I. Kaur, N. N. Stein, R. P. Kopreski, G. P. Miller, J. Am. Chem. Soc. 2009, 131, 3424.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVKktrg%3D&md5=a884036c9fdb2a6015ad7aad8920f925CAS | 19243093PubMed |

[30]  H. Qu, C. Chi, Org. Lett. 2010, 12, 3360.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVChs78%3D&md5=c111fa75c83342c316a2acab19cce4edCAS | 20670004PubMed |

[31]  I. Kaur, M. Jazdzyk, N. N. Stein, P. Prusevich, G. P. Miller, J. Am. Chem. Soc. 2010, 132, 1261.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvVGlsg%3D%3D&md5=c7a5166d8bcf9e33b8404e45a5050356CAS | 20055388PubMed |

[32]  T. Weil, T. Vosch, J. Hofkens, K. Peneva, K. Müllen, Angew. Chem. Int. Ed. 2010, 49, 9068.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCjsb%2FM&md5=f1b191e84aab9ac07571e0a7ec6d8bc7CAS |

[33]  X. Zhan, A. Facchetti, S. Barlow, T. J. Marks, M. A. Ratner, M. R. Wasielewski, S. R. Marder, Adv. Mater. 2011, 23, 268.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1ens7bK&md5=20c6e08b30ff1218d45746d8611d61ecCAS | 21154741PubMed |

[34]  F. Würthner, Chem. Commun. 2004, 1564.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  A. Bohnen, K. H. Koch, W. Lüttke, K. Müllen, Angew. Chem. Int. Ed. Engl. 1990, 29, 525.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  Y. Li, Z. Wang, Org. Lett. 2009, 11, 1385.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVKktrc%3D&md5=68260d0410f56bc6e1acf5a1ead98c7dCAS | 19245243PubMed |

[37]  Y. Li, J. Gao, S. D. Motta, F. Negri, Z. Wang, J. Am. Chem. Soc. 2010, 132, 4209.

[38]  F. O. Holtrup, G. R. J. Müller, H. Quante, S. de Feyter, F. C. de Schryver, K. Müllen, Chem. Eur. J. 1997, 3, 219.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvVOrtLY%3D&md5=aeb536de08c3130bd51e14ac9a305fe4CAS |

[39]  F. Nolde, J. Qu, C. Kohl, N. G. Pschirer, E. Reuther, K. Müllen, Chem. Eur. J. 2005, 11, 3959.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFSntrk%3D&md5=dced73c02af084b8d704b411280f8864CAS |

[40]  H. Quante, K. Müllen, Angew. Chem. Int. Ed. Engl. 1995, 34, 1323.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvV2nu74%3D&md5=661ea3209b7c5d9cdbf5c4773ae15740CAS |

[41]  Y. Geerts, H. Quante, H. Platz, R. Mahrt, M. Hopmeier, A. Böhm, K. Müllen, J. Mater. Chem. 1998, 8, 2357.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvVChsL4%3D&md5=7447003f35e528bd5ae940e478abb615CAS |

[42]  H. Langhals, J. Büttner, P. Blanke, Synthesis 2005, 364.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvVertbs%3D&md5=ebb8a1102d9ea6543912385b15eda653CAS |

[43]  S. W. Tam-Chang, W. Seo, I. K. Iverson, J. Org. Chem. 2004, 69, 2719.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitlKksLg%3D&md5=4e537094769e4543a9f9666c4a72fa86CAS | 15074918PubMed |

[44]  S. W. Tam-Chang, W. Seo, I. K. Iverson, S. M. Casey, Angew. Chem. Int. Ed. 2003, 42, 897.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitFWltL0%3D&md5=65f7894ed69d4a12aa714986553fdc70CAS |

[45]  F. Nolde, W. Pisula, S. Müller, C. Kohl, K. Müllen, Chem. Mater. 2006, 18, 3715.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvVGhsbo%3D&md5=c5ed45f9747f0ef737851e12771c1162CAS |

[46]  Y. Avlasevich, S. Müller, P. Erk, K. Müllen, Chem. Eur. J. 2007, 13, 6555.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1Whu78%3D&md5=a0c71789f948c469e83b33a05a891f15CAS |

[47]  C. Jiao, K. Huang, J. Luo, K. Zhang, C. Chi, J. Wu, Org. Lett. 2009, 11, 4508.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFKgu7fO&md5=6b34e92e2eeca0525fac2cb4f4b204d0CAS | 19772312PubMed |

[48]  N. G. Pschirer, C. Kohl, F. Nolde, J. Qu, K. Müllen, Angew. Chem. Int. Ed. 2006, 45, 1401.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitF2qt7g%3D&md5=bc67a051adcff5b432c11265b1ca96feCAS |

[49]  Y. Avlasevich, K. Müllen, Chem. Commun. 2006, 4440.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSms73K&md5=0827f35555da4daf9891841e96986e8cCAS |

[50]  H. Qian, F. Negri, C. Wang, Z. Wang, J. Am. Chem. Soc. 2008, 130, 17970.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFSisLnJ&md5=fc7be64e20defd0b7b7580b573ba2dc3CAS | 19035633PubMed |

[51]  Y. Shi, H. Qian, Y. Li, W. Yue, Z. Wang, Org. Lett. 2008, 10, 2337.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVGhsLw%3D&md5=be39235adb8ac580f62997dab115548aCAS | 18489179PubMed |

[52]  H. Qian, Z. Wang, W. Yue, D. Zhu, J. Am. Chem. Soc. 2007, 129, 10664.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovF2lsL8%3D&md5=986f3303ab4d966a37804c6099bd7054CAS | 17696353PubMed |

[53]  D. Désilets, P. M. Kazmaier, R. A. Burt, G. K. Hamer, Can. J. Chem. 1995, 73, 325.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  H. Langhals, G. Schonmann, K. Polborn, Chem. Eur. J. 2008, 14, 5290.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFGks7Y%3D&md5=db64a88e8004be99bdfde6726003d251CAS |

[55]  E. Clar, Chem. Ber. 1948, 81, 52.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH1MXmtlyr&md5=a4efced116e4c13794fcfbc53b49db45CAS |

[56]  H. Kuroda, J. Chem. Soc. 1960, 1856.

[57]  S. M. Arabei, T. A. Pavich, J. Appl. Spectrosc. 2000, 67, 236.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1Cktbc%3D&md5=e0cfff7dedd5ebbce60a434d79b36eddCAS |

[58]  J. Li, K. Zhang, X. Zhang, K. Huang, C. Chi, J. Wu, J. Org. Chem. 2010, 75, 856.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvVGmtA%3D%3D&md5=71053e53fb1fc27f7ddb9fd3968f8b9eCAS | 20055372PubMed |

[59]  K. Zhang, K. Huang, J. Li, J. Luo, C. Chi, J. Wu, Org. Lett. 2009, 11, 4854.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Cgtr7P&md5=589eb15bc767470ea77a52ff00f829b7CAS | 19817394PubMed |

[60]  A. Konishi, Y. Hirao, M. Nakano, A. Shimizu, E. Botek, B. Champagne, D. Shiomi, K. Sato, T. Takui, K. Matsumoto, H. Kurata, T. Kubo, J. Am. Chem. Soc. 2010, 132, 11021.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsVWlsLc%3D&md5=1dacb0e3262b41293484a36e8be1eb56CAS | 20698663PubMed |

[61]  E. Clar, K. F. Lang, H. Schulz-Kiesow, Chem. Ber. 1955, 88, 1520.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXptlSj&md5=26227f21329dcdf0d48b8b10edc324bfCAS |

[62]  H. A. Staab, A. Nissen, J. Ipaktschi, Angew. Chem. Int. Ed. Engl. 1968, 7, 226.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXhtVCrs7g%3D&md5=736f8beab087bb04ffad9710a62d4fceCAS |

[63]  H. A. Staab, J. Ipaktschi, A. Nissen, Chem. Ber. 1971, 104, 1182.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXktVGmt7w%3D&md5=2350e91e5c9ef3fce0087aa74aa30e85CAS |

[64]  R. H. Mitchell, F. Sondheimer, Tetrahedron 1970, 26, 2141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXktlGisL4%3D&md5=a10ba5b69d5d45e6d4003e0580eae171CAS |

[65]  R. Umeda, D. Hibi, K. Miki, Y. Tobe, Org. Lett. 2009, 11, 4104.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpslahsLo%3D&md5=d73944e87e1ecf203127dafd0848dfefCAS | 19673535PubMed |

[66]  T. C. Wu, C. H. Chen, D. Hibi, A. Shimizu, Y. Tobe, Y. T. Wu, Angew. Chem. Int. Ed. 2010, 49, 7059.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2lu7%2FP&md5=b96285b190b30f834abd287eef46be57CAS |

[67]  Z. Sun, K. W. Huang, J. Wu, Org. Lett. 2010, 12, 4690.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2msr3F&md5=d4f7f8b7c09af77db7792aa6c627baceCAS | 20863074PubMed |

[68]  X. Zhang, X. Jiang, J. Luo, C. Chi, H. Chen, J. Wu, Chem. Eur. J. 2010, 16, 464.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFSh&md5=403ad6cddfb3b48544cb4c275aee02cdCAS |

[69]  X. Zhang, J. Li, H. Qu, C. Chi, J. Wu, Org. Lett. 2010, 12, 3946.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVSju7bO&md5=c1261164a5436bf2288be487084173d8CAS | 20795746PubMed |

[70]  N. Aratani, D. Kim, A. Osuka, Chem. Asian J. 2009, 4, 1172.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps12jsbY%3D&md5=f267b0690d6e8e5134551253b719fb71CAS | 19514027PubMed |

[71]  A. Tsuda, A. Nakano, H. Furuta, H. Yamochi, A. Osuka, Angew. Chem. Int. Ed. 2000, 39, 558.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtlans70%3D&md5=1c7ab270575206a1e77fd553057cbc5cCAS |

[72]  A. Tsuda, Y. Nakamura, A. Osuka, Chem. Commun. 2003, 1096.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFGrt7o%3D&md5=f1eef6bb0f6b0f7bedbaf19bc6e7efebCAS |

[73]  M. C. Yoon, S. B. Noh, A. Tsuda, Y. Nakamura, A. Osuka, D. Kim, J. Am. Chem. Soc. 2007, 129, 10080.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFGnsLg%3D&md5=112bd96483de1f51b6f3f29671b7a610CAS | 17655310PubMed |

[74]  T. Ikeda, N. Aratani, S. Easwaramoorthi, D. Kim, A. Osuka, Org. Lett. 2009, 11, 3080.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1Sisbo%3D&md5=2fa3e7885200749b43683564557d64b1CAS | 19522523PubMed |

[75]  A. Tsuda, H. Furuta, A. Osuka, Angew. Chem. Int. Ed. 2000, 39, 2549.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltFCqsb8%3D&md5=b1c631463b3aee2cb43b0d24460eb53eCAS |

[76]  A. Tsuda, H. Furuta, A. Osuka, J. Am. Chem. Soc. 2001, 123, 10304.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvF2itLc%3D&md5=ae91366f4da97bcfc259b57c4dea118cCAS | 11603981PubMed |

[77]  A. Tsuda, A. Osuka, Science 2001, 293, 79.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFCnsbs%3D&md5=a7b3b74e92dc78f42f269c486e1a913dCAS | 11441176PubMed |

[78]  T. Ikeda, J. M. Lintuluoto, N. Aratani, Z. S. Yoon, D. Kim, A. Osuka, Eur. J. Org. Chem. 2006, 3193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsF2murc%3D&md5=ad0b0aab4946682a121a89e27a2f9330CAS |

[79]  Y. Nakamura, S. Y. Jang, T. Tanaka, N. Aratani, J. M. Lim, K. S. Kim, D. Kim, A. Osuka, Chem. Eur. J. 2008, 14, 8279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Gnt7nP&md5=adafacd51bb7bdee6c7a883a81a41fe0CAS |

[80]  Y. Nakamura, I. W. Hwang, N. Aratani, T. K. Ahn, D. M. Ko, A. Takagi, T. Kawai, T. Matsumoto, D. Kim, A. Osuka, J. Am. Chem. Soc. 2005, 127, 236.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCrurfK&md5=39c5be0461da64c50d1199da234c6cd5CAS | 15631473PubMed |

[81]  Y. Nakamura, N. Aratani, H. Shinokubo, A. Takagi, T. Kawai, T. Matsumoto, Z. S. Yoon, D. Y. Kim, T. K. Ahn, D. Kim, A. Muranaka, N. Kobayashi, A. Osuka, J. Am. Chem. Soc. 2006, 128, 4119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVOju7g%3D&md5=8039b10d0fb38342460fbd89bb10e0d5CAS | 16551121PubMed |

[82]  M. Tanaka, S. Hayashi, S. Eu, T. Umeyama, Y. Matano, H. Imahori, Chem. Commun. 2007, 2069.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVWqsrg%3D&md5=8167f920dd59db4230ccf47fae965154CAS |

[83]  N. K. S. Davis, M. Pawlicki, H. L. Anderson, Org. Lett. 2008, 10, 3945.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVChsL3J&md5=3ae6de0e8d20108c6c6b759ed6e35f6bCAS | 18722461PubMed |

[84]  N. K. S. Davis, A. L. Thompson, H. L. Anderson, Org. Lett. 2010, 12, 2124.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1GlurY%3D&md5=ce8cefeaa0d4218df42a3e8831187c15CAS | 20369826PubMed |

[85]  N. K. S. Davis, A. L. Thompson, H. L. Anderson, J. Am. Chem. Soc. 2011, 133, 30.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFClu7jK&md5=f279df7c5b3d722ff6c510174002a420CAS | 21141995PubMed |

[86]  C. Jiao, K. W. Huang, Z. Guan, Q. H. Xu, J. Wu, Org. Lett. 2010, 12, 4046.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVKmtbjE&md5=0152424c0c7c9529f4cc8e350e388cafCAS | 20734983PubMed |

[87]  C. Jiao, K. W. Huang, C. Chi, J. Wu, J. Org. Chem. 2011, 76, 661.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1ensr%2FK&md5=7a7628221d032f7fa30bf2cb0033d649CAS | 21192635PubMed |

[88]  C. Jiao, K. W. Huang, J. Wu, Org. Lett. 2011, 13, 632.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1ehtw%3D%3D&md5=f1d5165d5865667aa38dc62947324b21CAS | 21208009PubMed |