Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Synthesis of Cyclogossine B Using a Traceless Pseudoproline Turn-Inducer

Michelle S. Y. Wong A and Katrina A. Jolliffe A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry, The University of Sydney, NSW 2006, Australia.

B Corresponding author. Email: jolliffe@chem.usyd.edu.au

Australian Journal of Chemistry 63(5) 797-801 https://doi.org/10.1071/CH09643
Submitted: 9 December 2009  Accepted: 9 February 2010   Published: 21 May 2010

Abstract

The first synthesis of the cyclic octapeptide, cyclogossine B, has been achieved, confirming the reported structure of this natural product. Cyclization of a linear precursor containing a cysteine-derived thiazolidine as a traceless turn-inducer occurred in significantly higher yields than cyclization of the analogous alanine-containing precursor under identical conditions. Deprotection of the thiazolidine followed by desulfurization provided cyclogossine B in good overall yield, indicating that cysteine-derived pseudoprolines can be effectively used as traceless turn-inducers to facilitate the cyclization of small peptides.


Acknowledgements

We thank the Australian Research Council for financial support and for the award of a Queen Elizabeth II research fellowship to K.A.J.


References


[1]   W.-J. Xu, X.-J. Liao, S.-H. Xu, J.-Z. Diao, B. Du, X.-L. Zhou, S.-S. Pan, Org. Lett. 2008, 10,  4569.
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  open url image1

[28]   Forns P., Fields G. B., in Solid Phase Peptide Synthesis A Practical Guide (Eds S. A. Kates, F. Albericio) 2000, Ch. 1, pp. 1–77 (Marcel Dekker Inc.: New York, NY).




* Numbering starts at the N-terminal Gly in the linear precursor.

# Because of the hindered nature of the Xaa(ΨMe,Mepro) nitrogen, the heterocycles are normally incorporated into peptide chains as the preformed dipeptide.[6] The cyclic nature of the pseudoproline prevents C-terminal epimerization.