Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

Polymers with Sugar Buckets – The Attachment of Cyclodextrins onto Polymer Chains

Firdaus Yhaya A , Andrew M. Gregory A and Martina H. Stenzel A B
+ Author Affiliations
- Author Affiliations

A Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences and Engineering, University of New South Wales, Sydney, NSW 2052, Australia.

B Corresponding author. Email: m.stenzel@unsw.edu.au




Firdaus Yhaya completed his undergraduate studies in Universiti Sains Malaysia in 2003. He obtained his Masters in Polymer Engineering from Universiti Teknologi Malaysia in 2007. He received the scholarship from University Sains Malaysia and the Malaysian Government to pursue his Ph.D. degree in the University of New South Wales, Australia. He started his Ph.D. at the Centre for Advanced Macromolecular Design in 2008 under the supervision of Associate Professor Martina Stenzel. His Ph.D. research has focussed on the synthesis of polymers with pendant cyclodextrin moieties for novel drug carriers utilizing RAFT polymerization.



Andrew Gregory studied as an undergraduate at the University of Leicester (MChem., 2004). He moved north to the University of Nottingham to undertake a Ph.D. with Professor Steve Howdle, examining RAFT polymerizations in supercritical carbon dioxide (2007). After completing his doctorate he headed to the southern hemisphere to undertake a position as a Research Associate at Centre for Advanced Macromolecular Design, located in the University of New South Wales. He currently works with Associate Professor Martina Stenzel where his research interests incorporate drug delivery vehicles for platinum-based compounds, cyclodextrin-based polymers, and novel branched structures.



Martina Stenzel studied chemistry at the University of Bayreuth, Germany, before completing her Ph.D. in 1999 at the Institute of Applied Macromolecular Chemistry, University of Stuttgart, Germany. She then received a DAAD scholarship (German Academic Exchange Service) to work as a postdoctoral Fellow at the UNESCO Centre for Membrane Science and Technology at the University of New South Wales (UNSW), Sydney, Australia. In 2002, she took on a position as a lecturer at UNSW and worked within the Centre for Advanced Macromolecular Design on complex polymer architectures via RAFT polymerization and honeycomb structured porous films. She then got promoted to Senior Lecture in 2005 and Associate Professor in 2007. In 2008, she obtained a prestigious ARC Future Fellowship. Her research interest is focussed on the synthesis of functional polymers with complex architectures, such as glycopolymers and other polymers for biomedical applications. Martina Stenzel has published more than 130 peer-reviewed papers mainly on RAFT polymerization and five book chapters.

Australian Journal of Chemistry 63(2) 195-210 https://doi.org/10.1071/CH09516
Submitted: 25 September 2009  Accepted: 1 December 2009   Published: 26 February 2010

Abstract

This Review summarizes the structures obtained when marrying synthetic polymers of varying architectures with cyclodextrins. Polymers with cyclodextrin pendant groups were obtained by directly polymerizing cyclodextrin-based monomers or by postmodification of reactive polymers with cyclodextrins. Star polymers with cyclodextrin as the core with up to 21 arms were usually obtained by using modified cyclodextrins as initiator or controlling agent. Limited reports are available on the synthesis of star polymers by arm-first techniques, which all employed azide-functionalized cyclodextrin and ‘click’ chemistry to attach seven polymer arms to the cyclodextrin core. Polymer chains with one or two cyclodextrin terminal units were reported as well as star polymers carrying a cyclodextrin molecule at the end of each arm. Cyclodextrin polymers were obtained using different polymerization techniques ranging from atom transfer radical polymerization, reversible addition–fragmentation chain transfer polymerization, nitroxide-mediated polymerization, free radical polymerization to (ionic) ring-opening polymerization, and polycondensation. Cyclodextrin polymers touch all areas of polymer science from gene delivery, self-assembled structures, drug carriers, molecular sensors, hydrogels, and liquid crystalline polymers. This Review attempts to focus on the range of work conducted with polymers and cyclodextrins and highlights some of the key areas where these macromolecules have been applied.


References


[1]   J. Szejtli, J. Mater. Chem. 1997, 7,  575.
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
         
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  open url image1