Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Status of rare-earth perovskite catalysts in environmental applications

Pengyun Li A B , Aijun Gong https://orcid.org/0000-0002-6261-1013 A B * , Jiandi Li A B , Lina Qiu A B , Xianghai Wang A B , Yue Chen A B , Jiayi Yin A B , Xinyu Huang A B and Yifan Chen A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China.

B Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing, 100083, PR China.

* Correspondence to: gongaijun5661@ustb.edu.cn

Handling Editor: Martyn Coles

Australian Journal of Chemistry 77, CH23148 https://doi.org/10.1071/CH23148
Submitted: 9 August 2023  Accepted: 8 February 2024  Published online: 4 March 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

Rare-earth perovskite oxides have become a research hotspot in the fields of environment and energy owing to their structural tunability, excellent redox properties, high stability and high catalytic activity. Researchers have designed and developed different rare-earth perovskite catalysts for tackling environmental pollutants in recent years. This review summarizes recent research progress on rare-earth perovskite catalysts in the catalytic oxidation and photocatalytic degradation of pollutants, gas sensing of volatile organic compounds and photocatalytic water splitting for hydrogen production and carbon dioxide reduction and conversion, and summarizes the mechanism of these reactions. It also discusses in detail the relationship between structural modification, synthesis process and the physical–chemical properties of the catalysts. Finally, the challenges with rare-earth chalcocite catalysts in the field of environment and energy are discussed.

Keywords: catalytic oxidation, environmental pollutants, gas sensing, perovskite structure, photocatalytic degradation, photocatalytic reduction, rare-earth perovskite, synthesis techniques.

References

Alharbi NS, Hu B, Hayat T, Rabah SO, Alsaedi A, Zhuang L, Wang X. Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials. Front Chem Sci Eng 2020; 14: 1124-1135.
| Crossref | Google Scholar |

Sun CJ, Zhao LP, Wang R. Recent advances in heterostructured photocatalysts for degradation of organic pollutants. Mini Rev Org Chem 2021; 18: 649-669.
| Crossref | Google Scholar |

Bondarde MP, Lokhande KD, Bhakare MA, Dhumal PS, Some S. Oxidative degradation of organic pollutants using reusable catalyst. Appl NanoSci 2022; 13: 4407-4414.
| Crossref | Google Scholar |

Cui S, Li R, Pei J, Wen Y, Li Y, Xing X. Automobile exhaust purification over g-C3N4 catalyst material. Materials Chemistry and Physics 2020; 247: 122867.
| Crossref | Google Scholar |

Wang J, Tsuzuki T, Tang B, Sun L, Dai XJ, Rajmohan GD, Li J, Wang X. Recyclable textiles functionalized with reduced graphene oxide@ZnO for removal of oil spills and dye pollutants. Aust J Chem 2014; 67: 71-77.
| Crossref | Google Scholar |

Ihaddaden S, Aberkane D, Boukerroui A, Robert D. Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). J Water Process Eng 2022; 49: 102952.
| Crossref | Google Scholar |

Wang H, Zhang L, Hu C, Wang X, Lyu L, Sheng G. Enhanced degradation of organic pollutants over Cu-doped LaAlO3 perovskite through heterogeneous Fenton-like reactions. Chem Eng J 2018; 332: 572-581.
| Crossref | Google Scholar |

Saravanan A, Kumar PS, Vo DN, Jeevanantham S, Karishma S, Yaashikaa PR. A review on catalytic-enzyme degradation of toxic environmental pollutants: microbial enzymes. J Hazard Mater 2021; 419: 126451.
| Crossref | Google Scholar | PubMed |

Yang T, Peng J, Zheng Y, He X, Hou Y, Wu L, Fu X. Enhanced photocatalytic ozonation degradation of organic pollutants by ZnO modified TiO2 nanocomposites. Appl Catal B-Environ 2018; 221: 223-234.
| Crossref | Google Scholar |

10  Karthik KV, Raghu AV, Reddy KR, Ravishankar R, Sangeeta M, Shetti NP, Reddy CV. Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants. Chemosphere 2022; 287: 132081.
| Crossref | Google Scholar | PubMed |

11  Song YX, Ma WQ, Chen JJ, Xu J, Mao ZY, Wang DJ. Photocatalytic activity of perovskite SrTiO3 catalysts doped with variable rare earth ions. Rare Metals 2021; 40: 1077-1085.
| Crossref | Google Scholar |

12  Li W, Wang S, Li J. Effect of rare earth elements (La, Y, Pr) in multi-element composite perovskite oxide supports for ammonia synthesis. J Rare Earth 2021; 39: 427-433.
| Crossref | Google Scholar |

13  Xia W, Pei Z, Leng K, Zhu X. Research progress in rare earth-doped perovskite manganite oxide nanostructures. Nanoscale Res Lett 2020; 15: 9.
| Crossref | Google Scholar | PubMed |

14  Sahni M, Mukhopadhyay S, Mehra RM, Chauhan S, Sati PC, Kumar M, Singh M, Kumar N. Effect of Yb/Co co-dopants on surface chemical bonding states of BiFeO3 nanoparticles with promising photocatalytic performance in dye degradation. Journal of Physics and Chemistry of Solids 2021; 152: 109926.
| Crossref | Google Scholar |

15  Da Y, Zeng L, Wang C, Mao T, Chen R, Gong C, Fan G. Catalytic oxidation of diesel soot particulates over Pt substituted LaMn1-xPtxO3 perovskite oxides. Catal Today 2019; 327: 73-80.
| Crossref | Google Scholar |

16  Wu M, Chen S, Xiang W. Oxygen vacancy induced performance enhancement of toluene catalytic oxidation using LaFeO3 perovskite oxides. Chem Eng J 2020; 387: 124101.
| Crossref | Google Scholar |

17  Chen H, Wei G, Liang X, Liu P, He H, Xi Y, Zhu J. The distinct effects of substitution and deposition of Ag in perovskite LaCoO3 on the thermally catalytic oxidation of toluene. Appl Surf Sci 2019; 489: 905-912.
| Crossref | Google Scholar |

18  Deganello F, Tummino ML, Calabrese C, Testa ML, Avetta P, Fabbri D, Prevot AB, Montoneri E, Magnacca G. A new, sustainable LaFeO3 material prepared from biowaste-sourced soluble substances. New J Chem 2015; 39: 877-885.
| Crossref | Google Scholar |

19  Luo H, Guo J, Shen T, Zhou H, Liang J, Yuan S. Study on the catalytic performance of LaMnO3 for the RhB degradation. J Taiwan Inst Chem E 2020; 109: 15-25.
| Crossref | Google Scholar |

20  Gong C, Xiang S, Zhang Z, Sun L, Ye C, Lin C. Construction and visible-light-driven photocatalytic properties of LaCoO3-TiO2 nanotube arrays. Acta Physico-Chimica Sinica 2019; 35: 616-623.
| Crossref | Google Scholar |

21  Shi J, Yan R, Zhu Y, Zhang X. Determination of NH3 gas by combination of nanosized LaCoO3 converter with chemiluminescence detector. Talanta 2003; 61: 157-164.
| Crossref | Google Scholar | PubMed |

22  Shingange K, Swart HC, Mhlongo GH. LaBO3 (B = Fe, Co) nanofibers and their structural, luminescence and gas sensing characteristics. Physica B 2020; 578: 411883.
| Crossref | Google Scholar |

23  Yu J, Wang C, Yuan Q, Yu X, Wang D, Chen Y. Ag-modified porous perovskite-type LaFeO3 for efficient ethanol detection. Nanomaterials 2022; 12: 1768.
| Crossref | Google Scholar | PubMed |

24  Goldschmidt VM. Die Gesetze der Krystallochemie. Naturwissenschaften 1926; 14: 477-485.
| Crossref | Google Scholar |

25  Kieslich G, Sun S, Cheetham AK. Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog. Chem Sci. 2014; 5: 4712-4715.
| Crossref | Google Scholar |

26  Hartmann C, Laurencin J, Geneste G. Hole polarons in LaFeO3 and La1-xSrxFeO3-δ: stability, trapping, mobility, effect of Sr concentration, and oxygen vacancies. Phys Rev B 2023; 107: 024104.
| Crossref | Google Scholar |

27  Dias JA, Andrade MAS, Santos HLS, Morelli MR, Mascaro LH. Lanthanum-based perovskites for catalytic oxygen evolution reaction. Chemelectrochem 2020; 7: 3173-3192.
| Crossref | Google Scholar |

28  Wang H, Zhao Z, Xu CM, Duan AJ, Liu J, Chi YL. Simultaneous removal of soot particles and NO from diesel engines over LaBO3 perovskite-type oxides. Chinese J Catal 2008; 29: 649-654.
| Google Scholar |

29  Gao P, Tian X, Nie Y, Yang C, Zhou Z, Wang Y. Promoted peroxymonosulfate activation into singlet oxygen over perovskite for ofloxacin degradation by controlling the oxygen defect concentration. Chem Eng J 2019; 359: 828-839.
| Crossref | Google Scholar |

30  Zhong S, Sun Y, Xin H, Yang C, Chen L, Li X. NO oxidation over Ni-Co perovskite catalysts. Chem Eng J 2015; 275: 351-356.
| Crossref | Google Scholar |

31  Ramzi H, Batis H. Structure, chemical composition, and catalytic behaviour of stoichiometric and non-stoichiometric LaMnO3 toward deep oxidation of ethanol. Aust J Chem 2015; 68: 1900-1910.
| Crossref | Google Scholar |

32  Zhang F, Zhang X, Jiang G, Li N, Hao Z, Qu S. H2S selective catalytic oxidation over Ce substituted La1-xCexFeO3 perovskite oxides catalyst. Chem Eng J 2018; 348: 831-839.
| Crossref | Google Scholar |

33  Inns DR, Pei X, Zhou Z, Irving DJM, Kondrat SA. The influence of phase purity on the stability of Pt/LaAlO3 catalysts in the aqueous phase reforming of glycerol. Mater Today Chem. 2022; 26: 101230.
| Crossref | Google Scholar |

34  Zhang Z, Liang Y, Huang H, Liu X, Li Q, Chen L, Xu D. Stable and highly efficient photocatalysis with lead-free double-perovskite of Cs2AgBiBr6. Angew Chem Int Edit 2019; 58: 7263-7267.
| Crossref | Google Scholar | PubMed |

35  Ma X, Ai C, Cao J, Li J, Zhu Y, Jing D. Heterojunction formed by TiO2 supported on lamellar La2NiO4 perovskite for enhanced visible-light-driven photocatalytic hydrogen production. J Phonton Energy 2021; 11: 034001.
| Crossref | Google Scholar |

36  Lahmar H, Benamira M, Douafer S, Messaadia L, Boudjerda A, Trari M. Photocatalytic degradation of methyl orange on the novel hetero-system La2NiO4/ZnO under solar light. Chem Phys Lett 2020; 742: 137121.
| Crossref | Google Scholar |

37  Acharya S, Padhi DK, Parida KM. Visible light driven LaFeO3 nano sphere/RGO composite-photocatalysts for efficient water decomposition reaction. Catal Today 2020; 353: 220-231.
| Crossref | Google Scholar |

38  Zhang C, Li R, Zhao Y, Wang M. Construction of Z-scheme Bi2WO6/g-C3N4 heterojunction photocatalysts with enhanced visible-light photocatalytic activity. Aust J Chem 2017; 70: 889-895.
| Crossref | Google Scholar |

39  Lee YE, Chung WC, Chang MB. Photocatalytic oxidation of toluene and isopropanol by LaFeO3/black-TiO2. Environ Sci Pollut R 2019; 26: 20908-20919.
| Crossref | Google Scholar | PubMed |

40  Zheng Y, Chen Y, Wu E, Liu X, Huang B, Xue H, Cao C, Luo Y, Qian Q, Chen Q. Amorphous boron dispersed in LaCoO3 with large oxygen vacancies for efficient catalytic propane oxidation. Chem Eur J 2021; 27: 4738-4745.
| Crossref | Google Scholar | PubMed |

41  Kianipour S, Razavi FS, Waleed I, Izzat SE, Farhan I, Hussein TS, Heydaryan K, Salavati-Niasari M. NdCoO3 nanostructures as promising candidate photocatalysts for boosting visible-light-driven photocatalytic degradation of organic pollutants. J Sci-Adv Mater Dev 2022; 7: 100506.
| Crossref | Google Scholar |

42  Wang S, Zhang Y, Zhao S, Zhang Y, Wang Y, Zhang Y, Kang A, Duan E, Qiao S. A facile approach to improve the methane catalytic performance of LaCoO3 perovskite. Mol Catal 2022; 531: 112685.
| Crossref | Google Scholar |

43  Neha Singh SV. Facile and template-free synthesis of nano-macroporous LaCoO3 perovskite oxide for efficient diesel soot oxidation. React Kinet Mech Cat 2022; 135: 1607-1620.
| Crossref | Google Scholar |

44  Zhang Y, Sun L, Yu Z, Nie Z, Cao E. Constructing p-p heterojunction with PANI to improve the acetone sensing performance of LaFeO3 nanoparticles. Appl Phys a-Mater 2022; 128: 355.
| Crossref | Google Scholar |

45  Li J, Luo W, Wang X, Yu C, Zhang Y, Meng F. Preparation and research of high-performance LaFeO3/RGO supercapacitor. J Solid State Electrochem 2022; 26: 1291-1301.
| Crossref | Google Scholar |

46  Giannakas AE, Ladavos AK, Pomonis PJ. Preparation, characterization and investigation of catalytic activity for NO plus CO reaction of LaMnO3 and LaFeO3 perovskites prepared via microemulsion method. Appl Catal B-Environ 2004; 49: 147-158.
| Crossref | Google Scholar |

47  Ma Y, Su P, Ge Y, Wang F, Xue R, Wang Z, Li Y. A novel LaAlO3 perovskite with large surface area supported Ni-based catalyst for methane dry reforming. Catal Lett 2022; 152: 2993-3003.
| Crossref | Google Scholar |

48  Haron W, Wisitsoraat A, Wongnawa S. Nanostructured perovskite oxides – LaMO3 (M = Al, Co, Fe) prepared by co-precipitation method and their ethanol-sensing characteristics. Ceram Int 2017; 43: 5032-5040.
| Crossref | Google Scholar |

49  Tian Z, Huang W, Liang Y. Preparation of spherical nanoparticles of LaAlO3 via the reverse microemulsion process. Ceram Int 2009; 35: 661-664.
| Crossref | Google Scholar |

50  Anil C, Modak JM, Madras G. Syngas production via CO2 reforming of methane over noble metal (Ru, Pt, and Pd) doped LaAlO3 perovskite catalyst. Mol Catal 2020; 484: 110805.
| Crossref | Google Scholar |

51  Sui ZJ, Vradman L, Reizner I, Landau MV, Herskowitz M. Effect of preparation method and particle size on LaMnO3 performance in butane oxidation. Catal Commun 2011; 12: 1437-1441.
| Crossref | Google Scholar |

52  Karuppiah C, Thirumalraj B, Alagar S, Piraman S, Li YJJ, Yang CC. Solid-state ball-milling of Co3O4 nano/microspheres and carbon black endorsed LaMnO3 perovskite catalyst for bifunctional oxygen electrocatalysis. Catalysts 2021; 11: 76.
| Crossref | Google Scholar |

53  Mao M, Xu J, Li Y, Liu Z. Hydrogen evolution from photocatalytic water splitting by LaMnO3 modified with amorphous CoSx. J Mater Sci 2020; 55: 3521-3537.
| Crossref | Google Scholar |

54  Wang Y, Lv X, Huang Y, Jiang W, Kong Q, Zhang T, Fu X. Effect of Ce substitution on the structure and performance of three-dimensional ordered macropores La1-xCexCoO3 catalyst. J Solid State Chem 2022; 312: 123178.
| Crossref | Google Scholar |

55  Danks AE, Hall SR, Schnepp Z. The evolution of ‘sol-gel’ chemistry as a technique for materials synthesis. Mater Horiz. 2016; 3: 91-112.
| Crossref | Google Scholar |

56  Qin W, Yuan Z, Gao H, Zhang R, Meng F. Perovskite-structured LaCoO3 modified ZnO gas sensor and investigation on its gas sensing mechanism by first principle. Sensor Actuat B-Chem 2021; 341: 130015.
| Crossref | Google Scholar |

57  Chen M, Huang HQ, Zheng XM, Morris MA. Structural characterization and CO oxidation activity of nanostructured LaMnO3 catalysts. Aust J Chem 2002; 55: 757-760.
| Crossref | Google Scholar |

58  Shlapa Y, Solopan S, Belous A. Nanoparticles of La1-xSrxMnO3 (0.23≤x≤0.25) manganite: features of synthesis and crystallochemical properties. J Magn Magn Mater 2020; 510: 166902.
| Crossref | Google Scholar |

59  Boumaza S, Boudjellal L, Brahimi R, Belhadi A, Trari M. Synthesis by citrates sol-gel method and characterization of the perovskite LaFeO3: application to oxygen photo-production. J Sol-Gel Sci Technol 2020; 94: 486-492.
| Crossref | Google Scholar |

60  Leroy S, Blach JF, Kopia A, Lech S, Cieniek L, Kania N, Saitzek S. Enhancement of photocatalytic properties of nanosized La2Ti2O7 synthesized by glycine-assisted sol-gel route. J Photoch Photobio A 2022; 426: 113739.
| Crossref | Google Scholar |

61  Tong F, Zhao Y, Qu X, Yang R, Wang M. EDTA-complexing sol-gel synthesis of LaFeO3 nanostructures and their gas-sensing properties. J Electron Mater 2019; 48: 982-990.
| Crossref | Google Scholar |

62  Luo K, Zheng Q, Yu Y, Wang C, Jiang S, Zhang H, Liu Y, Guo Y. Urea-assisted sol-gel synthesis of LaMnO3 perovskite with accelerated catalytic activity for application in Zn–air battery. Batteries 2023; 9: 90.
| Crossref | Google Scholar |

63  Wang G, Jia G, Wang J, Kong H, Lu Y, Zhang C. Novel rare earth activator ions-doped perovskite-type La4Ti3O12 phosphors: facile synthesis, structure, multicolor emissions, and potential applications. J Alloys Compd 2021; 877: 160217.
| Crossref | Google Scholar |

64  Ćulubrk S, Antić Ž, Lojpur V, Marinović-Cincović M, Dramićanin MD. Sol-gel derived Eu3+-doped Gd2Ti2O7 pyrochlore nanopowders. J Nanomater 2015; 2015: 514173.
| Crossref | Google Scholar |

65  Tan HB. Mullite fibers prepared by a sol-gel method using tartaric acid. J Ceram Process Res 2012; 13: 575-578.
| Google Scholar |

66  Zhang L, Zhang W, Zhong H, Lu L, Yang X, Wang X. Synthesis and characterization of KNd2Ti3O9.5 nanocrystal and its catalytic effect on decomposition of ammonium perchlorate. Materials Chemistry and Physics 2011; 125: 322-325.
| Crossref | Google Scholar |

67  Sim Y, Yoo J, Ha JM, Jung JC. Oxidative coupling of methane over LaAlO3 perovskite catalysts prepared by a co-precipitation method: effect of co-precipitation pH value. J Energy Chem 2019; 35: 1-8.
| Crossref | Google Scholar |

68  Qi P, Cong Y, Yu L, Fu X, Ge X, Hao C, He L. Effect of co-precipitation synthesis parameters on gadolinium aluminate nanoparticles. Mater Lett 2023; 341: 134163.
| Crossref | Google Scholar |

69  Tillaoui S, El Boubekri A, Essoumhi A, Sajieddine M, Hlil EK, Moubah R, Sahlaoui M, Razouk A, Lassri H. Structural, magnetic, magnetocaloric properties and critical behavior of La0.62Nd0.05Ba0.33MnO3 elaborated by co-precipitation process. Mater Sci Eng B-Adv 2021; 266: 115052.
| Crossref | Google Scholar |

70  Tarka A, Zybert M, Kindler Z, Szmurło J, Mierzwa B, Raróg-Pilecka W. Effect of precipitating agent on the properties of cobalt catalysts promoted with cerium and barium for NH3 synthesis obtained by co-precipitation. Appl Catal A-Gen 2017; 532: 19-25.
| Crossref | Google Scholar |

71  Chung NTK, Tien NA, Diem CH, Vuong BX. Structural and optical properties of Sr-doped NdFeO3 nanoparticles prepared by a simple co-precipitation method. J Chem Sci 2022; 134: 34.
| Crossref | Google Scholar |

72  Hayashi H, Hakuta Y. Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials 2010; 3: 3794-3817.
| Crossref | Google Scholar | PubMed |

73  Yi K, Tang Q, Wu Z, Gu J, Zhu X. Structural, magnetic, and electrical transport properties of half-metallic double perovskite La2CrNiO6 oxides. J Alloys Compd 2023; 933: 167742.
| Crossref | Google Scholar |

74  Sahadevan J, Radhakrishnan M, Padmanathan N, Esakki Muthu S, P.Sivaprakash P, Kadiresan M. Effect of Mn substitution on magnetic behaviour of oxygen defective LaCoO3 perovskite oxide. Mater Sci Eng B-Adv 2022; 284: 115875.
| Crossref | Google Scholar |

75  Patel BK, Kolambage MTK, McMillen CD, Kolis JW. Hydrothermal synthesis of lanthanide ruthenate single crystals. J Cryst Growth 2023; 602: 126979.
| Crossref | Google Scholar |

76  Mimura K, Hamao N, Itasaka H, Liu Z, Hamamoto K. Hydrothermal synthesis of perovskite-type solid electrolyte nanoplate. J Sol-Gel Sci Technol 2022; 104: 599-605.
| Crossref | Google Scholar |

77  Gómez-Cuaspud JA, Vera-López E, Carda-Castelló JB, Barrachina-Albert E. One-step hydrothermal synthesis of LaFeO3 perovskite for methane steam reforming. React Kinet Mech Cat 2017; 120: 167-179.
| Crossref | Google Scholar |

78  Ngida REA, Zawrah MF, Khattab RM, Heikal E. Hydrothermal synthesis, sintering and characterization of nano La-manganite perovskite doped with Ca or Sr. Ceram Int 2019; 45: 4894-4901.
| Crossref | Google Scholar |

79  Hao P, Qu GM, Song P, Yang ZX, Wang Q. Synthesis of Ba-doped porous LaFeO3 microspheres with perovskite structure for rapid detection of ethanol gas. Rare Metals 2021; 40: 1651-1661.
| Crossref | Google Scholar |

80  Malik MA, Wani MY, Hashim MA. Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials. Arab J Chem. 2012; 5: 397-417.
| Crossref | Google Scholar |

81  Aman D, Zaki T, Mikhail S, Selim SA. Synthesis of a perovskite LaNiO3 nanocatalyst at a low temperature using single reverse microemulsion. Catal Today 2011; 164: 209-213.
| Crossref | Google Scholar |

82  Abazari R, Sanati S. Perovskite LaFeO3 nanoparticles synthesized by the reverse microemulsion nanoreactors in the presence of aerosol-OT: morphology, crystal structure, and their optical properties. Superlattices Microstruct 2013; 64: 148-157.
| Crossref | Google Scholar |

83  Afsharikia A, Dehghani MR, Rezaei M. Preparation of vanadium-based perovskite by the effective method of microemulsion on enhanced surface area and activity: environmental applications. Materials Chemistry and Physics 2017; 196: 177-185.
| Crossref | Google Scholar |

84  Pavlovska OB, Vasylechko LO, Lutsyuk IV, Koval NM, Zhydachevskii YA, Pieniazek A. Structure peculiarities of micro- and nanocrystalline perovskite ferrites La1-xSmxFeO3. Nanoscale Res Lett 2017; 12: 153.
| Crossref | Google Scholar | PubMed |

85  Yevilevich Y, Vradman L, Zana J, Weinstock IA, Herskowitz M. Investigation into La(Fe/Mn)O3 perovskites formation over time during molten salt synthesis. Inorg Chem 2022; 61: 6367-6375.
| Crossref | Google Scholar | PubMed |

86  Zhao G, Suzuki K, Hirayama M, Kanno R. Syntheses and characterization of novel perovskite-type LaScO3-based lithium ionic conductors. Molecules 2021; 26: 299.
| Crossref | Google Scholar | PubMed |

87  Levin I, Krayzman V, Playford HY, Woicik JC, Maier RA, Lu Z, Bruma A, Eremenko M, Tucker MG. The mediation of bond strain by vacancies and displacive disorder in A-site-deficient perovskites. Acta Mater 2021; 207: 116678.
| Crossref | Google Scholar |

88  Gildo-Ortiz L, Ramírez-Ortega JA, Guillén Bonilla H, Rodríguez-Betancourtt VM. Gas response enhancement of nanocrystalline LaFeO3 perovskite prepared using the microwave-assisted solution method. J Mater Sci-Mater E 2023; 34: 959.
| Crossref | Google Scholar |

89  Guo X, Yang S, Wang Y, Du D, Qi Z, Sun C, Gao X. Characterization of porous LaCoO3 prepared from wood powder template and its catalysis for diesel particulate matter. J Porous Mater 2023; 30: 911-920.
| Crossref | Google Scholar |

90  Naik MC, Bamane SR, Pakhare KS, Potdar SS. Novel synthesis of perovskite GdxAl1-xO3 semiconductor by combustion route for selective LPG sensing. Bull Mater Sci 2022; 45: 123.
| Crossref | Google Scholar |

91  Harputlu E, Gecgel C. Fabrication of LaFeO3/g-C3N4@reduced graphene oxide 3-dimensional nanostructure supercapacitor. J Mater Sci-Mater E 2022; 33: 25687-25703.
| Crossref | Google Scholar |

92  Arandiyan H, Wang Y, Sun H, Rezaei M, Dai H. Ordered meso- and macroporous perovskite oxide catalysts for emerging applications. Chem Commun 2018; 54: 6484-6502.
| Crossref | Google Scholar | PubMed |

93  Jing J, Pervez MN, Sun P, Cao C, Li B, Naddeo V, Jin W, Zhao Y. Highly efficient removal of bisphenol A by a novel Co-doped LaFeO3 perovskite/PMS system in salinity water. Sci Total Environ 2021; 801: 149490.
| Crossref | Google Scholar | PubMed |

94  Wang Y, Wang R, Yu L, Wang Y, Zhang C, Zhang X. Efficient reactivity of LaCu0.5Co0.5O3 perovskite intercalated montmorillonite and g-C3N4 nanocomposites in microwave-induced H2O2 catalytic degradation of bisphenol A. Chem Eng J 2020; 401: 126057.
| Crossref | Google Scholar |

95  Tarjomannejad A, Niaei A, Farzi A, Salari D, Zonouz PR. Catalytic oxidation of CO over LaMn1-xBxO3 (B = Cu, Fe) perovskite-type oxides. Catal Lett 2016; 146: 1544-1551.
| Crossref | Google Scholar |

96  Tran QN, Martinovic F, Ceretti M, Esposito S, Bonelli B, Paulus W, Di Renzo F, Deorsola FA, Bensaid S, Pirone R. Co-doped LaAlO3 perovskite oxide for NOx-assisted soot oxidation. Appl Catal A-Gen 2020; 589: 117304.
| Crossref | Google Scholar |

97  Tang Y, Tao Y, Wang Q, Zhu Z, Zhang W, Li X, Xie A, Luo S. Mesoporous double-perovskite LaAMnNiO6 (A = La, Pr, Sm) photothermal synergistic degradation of gaseous toluene. J Mater Res 2019; 34: 3439-3449.
| Crossref | Google Scholar |

98  Guo J, Jing Y, Shen T, Luo H, Liang J, Yuan S. Effect of doped strontium on catalytic properties of La1-xSrxMnO3 for rhodamine B degradation. J Rare Earth 2021; 39: 1362-1369.
| Crossref | Google Scholar |

99  Zhang L, Zhang Y, Wei J, Liu W. Perovskite LaFexCo1-xO3-lambda deposited SiO2 catalytic membrane for deeply cleaning wastewater. Chem Eng J 2021; 403: 126386.
| Crossref | Google Scholar |

100  Qi SY, Zhang WQ, Li X, Wang Q, Zhu ZR, Zhou T, Wang GX, Xie AJ, Luo SP. Catalytic oxidation of toluene over B-site doped La-based perovskite LaNixB1-xO3 (B=Co, Cu) catalysts. Environ Prog Sustain Energy 2023; 42: 13965.
| Crossref | Google Scholar |

101  Chen S, Hao Y, Chen R, Su Z, Chen T. Hollow multishelled spherical PrMnO3 perovskite catalyst for efficient catalytic oxidation of CO and toluene. J Alloys Compd 2021; 861: 158584.
| Crossref | Google Scholar |

102  Humayun M, Qu Y, Raziq F, Yan R, Li Z, Zhang X, Jing L. Exceptional visible-light activities of TiO2-coupled N-doped porous perovskite LaFeO3 for 2,4-dichlorophenol decomposition and CO2 conversion. Environ Sci Technol 2016; 50: 13600-13610.
| Crossref | Google Scholar | PubMed |

103  Guo J, Li P, Yang Z. A novel Z-scheme g-C3N4/LaCoO3 heterojunction with enhanced photocatalytic activity in degradation of tetracycline hydrochloride. Catal Commun 2019; 122: 63-67.
| Crossref | Google Scholar |

104  Maridevaru MC, Wu JJ, Viswanathan Mangalaraja R, Anandan S. Ultrasonic-assisted preparation of perovskite-type lanthanum nickelate nanostructures and its photocatalytic properties. Chemistryselect 2020; 5: 7947-7958.
| Crossref | Google Scholar |

105  Chen C, Ma Q, Liu F, Gao J, Li X, Sun S, Yao H, Liu C, Young J, Zhang W. Photocatalytically reductive defluorination of perfluorooctanoic acid (PFOA) using Pt/La2Ti2O7 nanoplates: experimental and DFT assessment. J Hazard Mater 2021; 419: 126452.
| Crossref | Google Scholar | PubMed |

106  Luo J, Zhou X, Ning X, Zhan L, Chen J, Li Z. Constructing a direct Z-scheme La2NiO4/g-C3N4 hybrid photocatalyst with boosted visible light photocatalytic activity. Sep Purif Technol 2018; 201: 327-335.
| Crossref | Google Scholar |

107  Kianipour S, Razavi FS, Hajizadeh-Oghaz M, Abdulsahib WK, Mahdi MA, Jasim LS, Salavati-Niasari M. The synthesis of the P/N-type NdCoO3/g-C3N4 nano-heterojunction as a high-performance photocatalyst for the enhanced photocatalytic degradation of pollutants under visible-light irradiation. Arab J Chem 2022; 15: 103840.
| Crossref | Google Scholar |

108  Li L, Wang X. Self-propagating combustion synthesis and synergistic photocatalytic activity of GdFeO3 nanoparticles. J Sol-Gel Sci Technol 2016; 79: 107-113.
| Crossref | Google Scholar |

109  Zeng Z, Xu Y, Zhang Z, Gao Z, Luo M, Yin Z, Zhang C, Xu J, Huang B, Luo F, Du Y, Yan C. Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications. Chem Soc Rev 2020; 49: 1109-1143.
| Crossref | Google Scholar | PubMed |

110  Zhu Z, Wan SP, Lu Q, Zhong Q, Zhao YX, Bu YF. A highly efficient perovskite oxides composite as a functional catalyst for tetracycline degradation. Sep Purif Technol 2022; 281: 119893.
| Crossref | Google Scholar |

111  Zhang D, Chen M, Zou H, Zhang Y, Hu J, Wang H, Zi B, Zhang J, Zhu Z, Duan L, Liu Q. Microwave-assisted synthesis of porous and hollow α-Fe2O3/LaFeO3 nanostructures for acetone gas sensing as well as photocatalytic degradation of methylene blue. Nanotechnology 2020; 31: 215601.
| Crossref | Google Scholar | PubMed |

112  Wei ZX, Xiao CM, Zeng WW, Liu JP. Magnetic properties and photocatalytic activity of La0.8Ba0.2Fe0.9Mn0.1O3−δ and LaFe0.9Mn0.1O3−δ. J Mol Catal A-Chem 2013; 370: 35-43.
| Crossref | Google Scholar |

113  Guo J, Dai Y, Chen X, Zhou L, Liu T. Synthesis and characterization of Ag3PO4/LaCoO3 nanocomposite with superior mineralization potential for bisphenol A degradation under visible light. J Alloys Compd 2017; 696: 226-233.
| Crossref | Google Scholar |

114  Jin Z, Hu R, Wang H, Hu J, Ren T. One-step impregnation method to prepare direct Z-scheme LaCoO3/g-C3N4 heterojunction photocatalysts for phenol degradation under visible light. Appl Surf Sci 2019; 491: 432-442.
| Crossref | Google Scholar |

115  Verduzco LE, Garcia-Diaz R, Martinez AI, Salgado RA, Mendez-Arriaga F, Lozano-Morales SA, Avendano-Alejo M, Padmasree KP. Degradation efficiency of methyl orange dye by La0.5Sr0.5CoO3 perovskite oxide under dark and UV irradiated conditions. Dyes and Pigments 2020; 183: 108743.
| Crossref | Google Scholar |

116  Shen H, Xue T, Wang Y, Cao G, Lu Y, Fang G. Photocatalytic property of perovskite LaFeO3 synthesized by sol-gel process and vacuum microwave calcination. Mater Res Bull 2016; 84: 15-24.
| Crossref | Google Scholar |

117  Ghiasi M, Malekzadeh A. Solar photocatalytic degradation of methyl orange over La0.7Sr0.3MnO3 nano-perovskite. Sep Purif Technol 2014; 134: 12-19.
| Crossref | Google Scholar |

118  Tavakkoli H, Beiknejad D, Tabari T. Fabrication of perovskite-type oxide La0.5Ca0.5CoO3-δ nanoparticles and its dye removal performance. Desalin Water Treat. 2014; 52: 7377-7388.
| Crossref | Google Scholar |

119  Rahimi-Nasrabadi M, Mahdavi S, Adib K. Photocatalytically active La2Ti2O7 nanostructures, synthesis and characterization. J Mater Sci-Mater E 2017; 28: 12564-12571.
| Crossref | Google Scholar |

120  Chen C, Bao R, Yang L, Tai S, Zhao Y, Wang W, Xia J, Li H. Application of inorganic perovskite LaNiO3 partial substituted by Ce and Cu in absorbance and photocatalytic degradation of antibiotics. Appl Surf Sci 2022; 579: 152026.
| Crossref | Google Scholar |

121  Aamir M, Bibi I, Ata S, Jilani K, Majid F, Kamal S, Alwadai N, Raza MAS, Bashir M, Iqbal S, Aadil M, Iqbal M. Ferroelectric, dielectric, magnetic, structural and photocatalytic properties of Co and Fe doped LaCrO3 perovskite synthesized via micro-emulsion route. Ceram Int 2021; 47: 16696-16707.
| Crossref | Google Scholar |

122  Furlan C, Mortarino C. Forecasting the impact of renewable energies in competition with non-renewable sources. Renew Sust Enegy Rev 2018; 81: 1879-1886.
| Crossref | Google Scholar |

123  Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972; 238: 37-38.
| Crossref | Google Scholar | PubMed |

124  Tijare SN, Joshi MV, Padole PS, Mangrulkar PA, Rayalu SS, Labhsetwar NK. Photocatalytic hydrogen generation through water splitting on nano-crystalline LaFeO3 perovskite. Int J Hydrogen Energy 2012; 37: 10451-10456.
| Crossref | Google Scholar |

125  Zhang Y, Wang T, Zhou M, Wang Y, Zhang Z. Hydrothermal preparation of Ag-TiO2 nanostructures with exposed {001}/{101} facets for enhancing visible light photocatalytic activity. Ceram Int 2017; 43: 3118-3126.
| Crossref | Google Scholar |

126  Tasleem S, Tahir M, Zakaria ZY. Z-scheme Ag-NPs-embedded LaCoO3 dispersed pCN heterojunction with higher kinetic rate for stimulating photocatalytic solar H2 production. Energy Convers Manage 2022; 266: 115787.
| Crossref | Google Scholar |

127  Lv T, Wu M, Guo M, Liu Q, Jia L. Self-assembly photocatalytic reduction synthesis of graphene-encapusulated LaNiO3 nanoreactor with high efficiency and stability for photocatalytic water splitting to hydrogen. Chem Eng J 2019; 356: 580-591.
| Crossref | Google Scholar |

128  Ibarra-Rodriguez LI, Huerta-Flores AM, Mora-Hernandez JM, Torres-Martínez LM. Photocatalytic evolution of H2 over visible-light active LaMO3 (M: Co, Mn, Fe) perovskite materials: roles of oxygenated species in catalytic performance. Journal of Physics and Chemistry of Solids 2020; 136: 109189.
| Crossref | Google Scholar |

129  Li J, Pan X, Xu Y, Jia L, Yi X, Fang W. Synergetic effect of copper species as cocatalyst on LaFeO3 for enhanced visible-light photocatalytic hydrogen evolution. Int J Hydrogen Energy 2015; 40: 13918-13925.
| Crossref | Google Scholar |

130  Chen H, Sun X, Xu X. Ruddlesden–Popper compounds (SrO)(LaFeO3)n (n = 1 and 2) as p-type semiconductors for photocatalytic hydrogen production. Electrochimica Acta 2017; 252: 138-146.
| Crossref | Google Scholar |

131  Mao M, Xu J, Li L, Zhao S, Li X, Li Y, Liu Z. High performance hydrogen production of MoS2-modified perovskite LaNiO3 under visible light. Ionics 2019; 25: 4533-4546.
| Crossref | Google Scholar |

132  Kim HG, Hwang DW, Bae SW, Jung JH, Lee JS. Photocatalytic water splitting over La2Ti2O7 synthesized by the polymerizable complex method. Catal Lett 2003; 91: 193-198.
| Crossref | Google Scholar |

133  Xu X, Wang R, Sun X, Lv M, Ni S. Layered perovskite compound NaLaTiO4 modified by nitrogen doping as a visible light active photocatalyst for water splitting. Acs Catalysis 2020; 10: 9889-9898.
| Crossref | Google Scholar |

134  Meziani D, Reziga A, Rekhila G, Bellal B, Trari M. Hydrogen evolution under visible light over LaCoO3 prepared by chemical route. Energy Convers Manage 2014; 82: 244-249.
| Crossref | Google Scholar |

135  Álvarez A, Bansode A, Urakawa A, Bavykina AV, Wezendonk TA, Makkee M, Gascon J, Kapteijn F. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem Rev 2017; 117: 9804-9838.
| Crossref | Google Scholar | PubMed |

136  Qin J, Lin L, Wang X. A perovskite oxide LaCoO3 cocatalyst for efficient photocatalytic reduction of CO2 with visible light. Chem Commun 2018; 54: 2272-2275.
| Crossref | Google Scholar | PubMed |

137  Han R, Chen L, Xing B, Guo Q, Tian J, Sha N, Zhao Z. Pr3+-doped La1-xPrxMn0.6Ni0.4O3-δ as efficient artificial photosynthesis catalysts for solar methanol.106440. Catal Commun 2022; 165:.
| Crossref | Google Scholar |

138  Xu LJ, Ha MN, Guo QS, Wang LC, Ren YN, Sha N, Zhao Z. Photothermal catalytic activity of combustion synthesized LaCoxFe1−xO3 (0 ≤ x ≤ 1) perovskite for CO2 reduction with H2O to CH4 and CH3OH. RSC Adv 2017(73): 45949-45959.
| Crossref | Google Scholar |

139  Li Z, Yang Y, Tian J, Li J, Chen G, Zhou L, Sun Y, Qiu Y. Selective photocatalytic reduction of CO2 to syngas over tunable metal–perovskite interface. Chemsuschem 2022; 15: e202102729.
| Crossref | Google Scholar | PubMed |

140  Li S, Li Y, Chen Y, Xu L, Chen Q, Qu Y, Wang G, Zhu P, Wang D, Qin W. Enhanced visible-light photoactivities of perovskite-type LaFeO3 nanocrystals by simultaneously doping Er3+ and coupling MgO for CO2 reduction. Chemcatchem 2020; 12: 623-630.
| Crossref | Google Scholar |

141  Jia L, Li J, Fang W, Song H, Li Q, Tang Y. Visible-light-induced photocatalyst based on C-doped LaCoO3 synthesized by novel microorganism chelate method. Catal Commun 2009; 10: 1230-1234.
| Crossref | Google Scholar |

142  Madi M, Tahir M. Highly stable LaCoO3 perovskite supported g-C3N4 nanotextures with proficient charges migration for visible light CO2 photoreduction to CO and CH4. Mater Sci Semicond Process 2022; 142: 106517.
| Crossref | Google Scholar |

143  Zhao J, Liu F, Wang W, Wang Y, Wen N, Zhang Z, Dai W, Yuan R, Ding Z, Long J. S-scheme-heterojunction LaNiO3/CdLa2S4 photocatalyst for solar-driven CO2-to-CO conversion. Acs Applied Nano Materials 2023; 6: 8927-8936.
| Crossref | Google Scholar |

144  Wang Z, Teramura K, Hosokawa S, Tanaka T. Photocatalytic conversion of CO2 in water over Ag-modified La2Ti2O7. Appl Catal B-Environ 2015; 163: 241-247.
| Crossref | Google Scholar |

145  Ha MN, Lu G, Liu Z, Wang L, Zhao Z. 3DOM-LaSrCoFeO3-δ as a highly active catalyst for the thermal and photothermal reduction of CO2 with H2O to CH4. J Mater Chem A 2016; 4: 13155-13165.
| Crossref | Google Scholar |

146  Wei GH, Zheng DM, Xu LJ, Guo QS, Hu JF, Sha N, Zhao Z. Photothermal catalytic activity and mechanism of LaNixCo1-xO3(0<=x<=1) perovskites for CO2 reduction to CH4 and CH3OH with H2O. Materials Research Express 2019; 6: 086221.
| Crossref | Google Scholar |

147  Bhardwaj A, Bae H, Mathur L, Mathur S, Song SJ. Efficient nitric oxide sensing on nanostructured La2MMnO6 (M: Co, Cu, Zn) electrodes. Ceram Int 2023; 49: 9607-9614.
| Crossref | Google Scholar |

148  Kim J, John AT, Li H, Huang CY, Chi Y, Anandan PR, Murugappan K, Tang J, Lin CH, Hu L, Kalantar-Zadeh K, Tricoli A, Chu D, Wu T. High-performance optoelectronic gas sensing based on all-inorganic mixed-halide perovskite nanocrystals with halide engineering. Small Methods 2023; 2300417.
| Crossref | Google Scholar | PubMed |

149  Lee KY, Hsieh JC, Chen CA, Chen WL, Meng HF, Lu CJ, Horng SF, Zan HW. Ultrasensitive detection of hydrogen sulfide gas based on perovskite vertical channel chemo-sensor. Sensor Actuat B-Chem 2021; 326: 128988.
| Crossref | Google Scholar |

150  Liu H, Cao Y, Chen Y, Liu W, Miao T, Bin Cheng C, Qin H, Hu J. Gas response of La1-xYxFeO3 planar electrode sensors to volatile organic compounds under light illumination. J Alloys Compd 2023; 937: 168436.
| Crossref | Google Scholar |

151  Xu X, Wang X, Liu W, Wang S, Jiang H, Ma S, Yuan F, Ma N. Ambient stable CsPbBr3/ZnO nanostructures for ethanolamine sensing. Acs Applied Nano Materials 2022; 5: 15030-15041.
| Crossref | Google Scholar |

152  Shingange K, Swart HC, Mhlongo GH. LaBO3(B=Fe, Co) nanofibers and their structural, luminescence and gas sensing characteristics. Physica B 2020; 578: 411883.
| Crossref | Google Scholar |

153  Li F, Wang Z, Wang A, Wu S, Zhang L. N-type LaFe1-xMnxO3 prepared by sol-gel method for gas sensing. J Alloys Compd 2020; 816: 152647.
| Crossref | Google Scholar |

154  Ding JC, Li HY, Cai ZX, Wang XX, Guo X. Near room temperature CO sensing by mesoporous LaCoO3 nanowires functionalized with Pd nanodots. Sensor Actuat B-Chem 2016; 222: 517-524.
| Crossref | Google Scholar |

155  Zhang H, Yi J. Enhanced ethanol gas sensing performance of ZnO nanoflowers decorated with LaMnO3 perovskite nanoparticles. Mater Lett 2018; 216: 196-198.
| Crossref | Google Scholar |

156  Qin J, Cui Z, Yang X, Zhu S, Li Z, Liang Y. Synthesis of three-dimensionally ordered macroporous LaFeO3 with enhanced methanol gas sensing properties. Sensor Actuat B-Chem 2015; 209: 706-713.
| Crossref | Google Scholar |

157  Ma L, Ma SY, Shen XF, Wang TT, Jiang XH, Chen Q, Qiang Z, Yang HM, Chen H. PrFeO3 hollow nanofibers as a highly efficient gas sensor for acetone detection. Sensor Actuat B-Chem 2018; 255: 2546-2554.
| Crossref | Google Scholar |

158  Liu H, Guo Y, Xie R, Peng T, Ma G, Tang Y. Novel acetone sensing performance of La1-xSrxCoO3 nanoparticles at room temperature. Sensor Actuat B-Chem 2017; 246: 164-168.
| Crossref | Google Scholar |

159  Wu L, Shi X, Du H, An Q, Li Z, Xu H, Ran H. Ce-doped LaCoO3 film as a promising gas sensor for ethanol. Aip Advances 2021; 11: 055305.
| Crossref | Google Scholar |

160  Shingange K, Mhlongo GH, Swart HC. Enhanced ethanol sensing abilities of fiber-like La1-xCexCoO3(0 < x < 0.2) perovskites based-sensors at low operating temperatures. Sensor Actuat B-Chem 2023; 377: 133012.
| Crossref | Google Scholar |

161  Qin W, Zhang R, Yuan Z, Xing C, Meng F. Preparation of p-LaFeO3/n-Fe2O3 heterojunction composites by one-step hydrothermal method and gas sensing properties for acetone. Ieee T Instrum Meas 2022; 71: 1-9.
| Crossref | Google Scholar |

162  Xia Z, Zheng C, Hu J, Yuan Q, Zhang C, Zhang J, He L, Gao H, Jin L, Chu X, Meng F. Synthesis of SnO2 quantum dot sensitized LaFeO3 for conductometric formic acid gas sensors. Sensor Actuat B-Chem 2023; 379: 133198.
| Crossref | Google Scholar |

163  Jing ZJ, Zhong ZC, Zhang CM, Gao QC. Co-doped LaFeO3 gas sensor for fast low-power acetone detection. J Nanoelectron Optoe. 2022; 17: 775-784.
| Crossref | Google Scholar |

164  Aranthady C, Jangid T, Gupta K, Mishra AK, Kaushik SD, Siruguri V, Rao GM, Shanbhag GV, Sundaram NG. Selective SO2 detection at low concentration by Ca substituted LaFeO3 chemiresistive gas sensor: A comparative study of LaFeO3 pellet vs thin film. Sensor Actuat B-Chem 2021; 329: 129211.
| Crossref | Google Scholar |

165  Zhang H, Xiao J, Chen J, Wang Y, Zhang L, Yue S, Li S, Huang T, Sun D. Pd-modified LaFeO3 as a high-efficiency gas-sensing material for H2S gas detection. Nanomaterials 2022; 12: 2460.
| Crossref | Google Scholar | PubMed |

166  Xiao C, Zhang X, Ma Z, Yang K, Gao X, Wang H, Jia L. Formaldehyde gas sensor with 1 ppb detection limit based on In-doped LaFeO3 porous structure. Sensor Actuat B-Chem 2022; 371: 132558.
| Crossref | Google Scholar |

167  Sheng H, Ma S, Han T, Yun P, Yang T, Ren J. A highly sensitivity and anti-humidity gas sensor for ethanol detection with NdFeO3 nano-coral granules. Vacuum 2022; 195: 110642.
| Crossref | Google Scholar |