Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

Natural products isolation studies of native Australian fern species

Thinley Gyeltshen https://orcid.org/0000-0002-5906-2922 A , Jason A. Smith A * and Alex C. Bissember https://orcid.org/0000-0001-5515-2878 A *
+ Author Affiliations
- Author Affiliations

A School of Natural Sciences – Chemistry, University of Tasmania, Hobart, Tas., 7001, Australia.


Handling Editor: Craig Hutton

Australian Journal of Chemistry 75(6) 422-437 https://doi.org/10.1071/CH22108
Submitted: 16 May 2022  Accepted: 7 June 2022   Published: 26 July 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Natural products isolation studies of 16 native Australian fern species have been undertaken, facilitated by pressurised hot water extraction (PHWE). Fourteen of these fern species have not been the subject of natural products isolation research previously. In total, 14 different compounds were isolated from 12 of these 16 different fern species. This included γ- and δ-lactones; flavonoid glycosides, a dihydrobenzofuran neolignan, in addition to hydroxycinnamate/caffeic acid esters. More specifically, the lactones 5,6-dihydro-5-hydroxy-6-methyl-2H-pyran-2-one, 5-(1-hydroxyethyl)-2(5H)-furanone and osmundalin were obtained from Todea barbara, while a dihydrobenzofuran neolignan, (−)-trans-blechnic acid were found in Austroblechnum penna-marina subsp. alpina, and the shikimate ester 5-O-caffeoylshikimic acid was isolated from Parablechnum wattsii. In addition, flavonoids and their glycoside derivatives, kaempferol 3-O-glucopyranoside, 4β-carboxymethyl-(−)-epicatechin, (2R)-eriodictyol-7-O-β-d-glucopyranoside, naringin, quercitrin, quercetin 3-O-(6″-acetyl)-β-d-glucopyranoside, rutin, and tiliroside were isolated from seven other fern species.

Keywords: ferns, flavonoid, glycoside, natural products, natural products isolation, neolignan, Polystichum, Todea.


References

[1]  Hassler M. World ferns. Synonymic checklist and distribution of ferns and lycophytes of the world. 2022. Available at www.worldplants.de [cited 19 January 2022]

[2]  Y Liu, W Wujisguleng, C Long, Food uses of ferns in China: a review. Acta Soc Bot Pol 2012, 81, 263.
         | Food uses of ferns in China: a review.Crossref | GoogleScholarGoogle Scholar |

[3]  T Matsuura, K Sugimura, A Miyamoto, N Tanaka, Knowledge-based estimation of edible fern harvesting sites in mountainous communities of northeastern Japan. Sustainability 2014, 6, 175.
         | Knowledge-based estimation of edible fern harvesting sites in mountainous communities of northeastern Japan.Crossref | GoogleScholarGoogle Scholar |

[4]  LA Wallis, B Stephenson, A nardoo processing grinding stone from a rockshelter in the Pilbara, Western Australia. Aust Archaeol 2020, 86, 112.
         | A nardoo processing grinding stone from a rockshelter in the Pilbara, Western Australia.Crossref | GoogleScholarGoogle Scholar |

[5]  Xr Baskaran, Av Geo Vigila, Sz Zhang, Sx Feng, Wb Liao, A review of the use of pteridophytes for treating human ailments. J Zhejiang Univ Sci B 2018, 19, 85.
         | A review of the use of pteridophytes for treating human ailments.Crossref | GoogleScholarGoogle Scholar |

[6]  GQ Su, HT Li, H Sun, et al. [Endemic plants for medicine use in China]. Zhongguo Zhongyao Zazhi 2017, 42, 4329.
         | [Endemic plants for medicine use in China].Crossref | GoogleScholarGoogle Scholar |

[7]  B Liu, Z-y Guo, R Bussmann, F-f Li, J-q Li, L-y Hong, et al. Ethnobotanical approaches of traditional medicine studies in Southwest China: a literature review. J Ethnopharmacol 2016, 186, 343.
         | Ethnobotanical approaches of traditional medicine studies in Southwest China: a literature review.Crossref | GoogleScholarGoogle Scholar |

[8]  J Sureshkumar, R Silambarasan, KA Bharati, J Krupa, S Amalraj, M Ayyanar, A review on ethnomedicinally important pteridophytes of India. J Ethnopharmacol 2018, 219, 269.
         | A review on ethnomedicinally important pteridophytes of India.Crossref | GoogleScholarGoogle Scholar |

[9]  RCPDS Reinaldo, ACP Santiago, PM Medeiros, UP Albuquerque, Do ferns and lycophytes function as medicinal plants? A study of their low representation in traditional pharmacopoeias. J Ethnopharmacol 2015, 175, 39.
         | Do ferns and lycophytes function as medicinal plants? A study of their low representation in traditional pharmacopoeias.Crossref | GoogleScholarGoogle Scholar |

[10]  H Cao, TT Chai, X Wang, MFB Morais-Braga, JH Yang, FC Wong, et al. Phytochemicals from fern species: potential for medicine applications. Phytochem Rev 2017, 16, 379.
         | Phytochemicals from fern species: potential for medicine applications.Crossref | GoogleScholarGoogle Scholar |

[11]  F Jiang, B Qi, N Ding, H Yang, F Jia, Y Luo, et al. Lycopodium alkaloids from Huperzia serrata. Fitoterapia 2019, 137, 104277.
         | Lycopodium alkaloids from Huperzia serrata.Crossref | GoogleScholarGoogle Scholar |

[12]  QF Zhu, QS Zhao, Chemical constituents and biological activities of lycophytes and ferns. Chin J Nat Med 2019, 17, 887.
         | Chemical constituents and biological activities of lycophytes and ferns.Crossref | GoogleScholarGoogle Scholar |

[13]  L-j Lin, X-b Huang, Z-c Lv, Isolation and identification of flavonoids components from Pteris vittata L. SpringerPlus 2016, 5, 5.
         | Isolation and identification of flavonoids components from Pteris vittata L.Crossref | GoogleScholarGoogle Scholar |

[14]  M Hou, Y Chen, Y Wang, K Hao, Sesquiterpenoids and flavonoids from Pteris multifida Poir. Biochem Syst Ecol 2021, 98, 104320.
         | Sesquiterpenoids and flavonoids from Pteris multifida Poir.Crossref | GoogleScholarGoogle Scholar |

[15]  F Asai, M Iinuma, T Tanaka, M Mizuno, Complex flavonoids in farinose exudate from Pityrogramma calomelanos. Phytochemistry 1991, 30, 3091.
         | Complex flavonoids in farinose exudate from Pityrogramma calomelanos.Crossref | GoogleScholarGoogle Scholar |

[16]  (a) M Iinuma, T Tanaka, M Takenaka, M Mizuno, F Asai, Five complex flavonoids in the farinose exudate of Pityrogramma Calomelanos. Phytochemistry 1992, 31, 2487.
         | Five complex flavonoids in the farinose exudate of Pityrogramma Calomelanos.Crossref | GoogleScholarGoogle Scholar |
      (b) F Asai, M Iinuma, T Tanaka, M Mizuno, Two complex flavonoids in the farinose exudate of Pityrogramma Calomelanos. Heterocycles 1992, 33, 229.
         | Two complex flavonoids in the farinose exudate of Pityrogramma Calomelanos.Crossref | GoogleScholarGoogle Scholar |

[17]  S-Y Shim, S-g Lee, M Lee, Biflavonoids isolated from Selaginella tamariscina and their anti-inflammatory activities via ERK 1/2 signaling. Molecules 2018, 23, 926.
         | Biflavonoids isolated from Selaginella tamariscina and their anti-inflammatory activities via ERK 1/2 signaling.Crossref | GoogleScholarGoogle Scholar |

[18]  HP Long, H Zou, FS Li, J Li, P Luo, ZX Zou, et al. Involvenflavones A-F, six new flavonoids with 3′-aryl substituent from Selaginella involven. Fitoterapia 2015, 105, 254.
         | Involvenflavones A-F, six new flavonoids with 3′-aryl substituent from Selaginella involven.Crossref | GoogleScholarGoogle Scholar |

[19]  LH Su, YP Li, HM Li, WF Dai, D Liu, L Cao, et al. Anti-inflammatory prenylated flavonoids from Helminthostachys zeylanica. Chem Pharm Bull 2016, 64, 497.
         | Anti-inflammatory prenylated flavonoids from Helminthostachys zeylanica.Crossref | GoogleScholarGoogle Scholar |

[20]  RH Mohammad, M Nur-E-Alam, M Lahmann, I Parveen, GJ Tizzard, SJ Coles, et al. Isolation and characterisation of 13 pterosins and pterosides from bracken (Pteridium aquilinum (L.) Kuhn) rhizome. Phytochemistry 2016, 128, 82.
         | Isolation and characterisation of 13 pterosins and pterosides from bracken (Pteridium aquilinum (L.) Kuhn) rhizome.Crossref | GoogleScholarGoogle Scholar |

[21]  H Niwa, M Ojika, K Wakamatsu, K Yamada, I Hirono, K Matsushita, Ptaquiloside, a novel norsesquiterpene glucoside from bracken, Pteridium aquilinum var. latiusculum. Tetrahedron Lett 1983, 24, 4117.
         | Ptaquiloside, a novel norsesquiterpene glucoside from bracken, Pteridium aquilinum var. latiusculum.Crossref | GoogleScholarGoogle Scholar |

[22]  X Ge, G Ye, P Li, WJ Tang, JL Gao, WM Zhao, Cytotoxic diterpenoids and sesquiterpenoids from Pteris multifida. J Nat Prod 2008, 71, 227.
         | Cytotoxic diterpenoids and sesquiterpenoids from Pteris multifida.Crossref | GoogleScholarGoogle Scholar |

[23]  MM Li, K Wang, J He, LY Peng, XQ Chen, X Cheng, et al. Four new labdane-type diterpenoid glycosides from Diplopterygium laevissimum. Nat Prod Bioprospect 2013, 3, 38.
         | Four new labdane-type diterpenoid glycosides from Diplopterygium laevissimum.Crossref | GoogleScholarGoogle Scholar |

[24]  XL Li, LM Yang, Y Zhao, RR Wang, G Xu, YT Zheng, et al. Tetranorclerodanes and clerodane-type diterpene glycosides from Dicranopteris dichotoma. J Nat Prod 2007, 70, 265.
         | Tetranorclerodanes and clerodane-type diterpene glycosides from Dicranopteris dichotoma.Crossref | GoogleScholarGoogle Scholar |

[25]  C Socolsky, Y Asakawa, A Bardón, Diterpenoid glycosides from the bitter fern Gleichenia quadripartita. J Nat Prod 2007, 70, 1837.
         | Diterpenoid glycosides from the bitter fern Gleichenia quadripartita.Crossref | GoogleScholarGoogle Scholar |

[26]  H Wada, Y Shimizu, T Hakamatsuka, N Tanaka, RC Cambie, JE Braggins, Two new clerodane glycosides from Gleichenia microphylla. Aust J Chem 1998, 51, 171.
         | Two new clerodane glycosides from Gleichenia microphylla.Crossref | GoogleScholarGoogle Scholar |

[27]  E Snogan, I Vahirua-Lechat, R Ho, G Bertho, JP Girault, S Ortiga, et al. Ecdysteroids from the medicinal fern Microsorum scolopendria (Burm. f.). Phytochem Anal 2007, 18, 441.
         | Ecdysteroids from the medicinal fern Microsorum scolopendria (Burm. f.).Crossref | GoogleScholarGoogle Scholar |

[28]  R Ho, T Teai, D Loquet, JP Bianchini, JP Girault, R Lafont, et al. Phytoecdysteroids in the genus Microsorum (Polypodiaceae) of French Polynesia. Nat Prod Commun 2007, 2, 1934578X0700200.
         | Phytoecdysteroids in the genus Microsorum (Polypodiaceae) of French Polynesia.Crossref | GoogleScholarGoogle Scholar |

[29]  M Watanabe, T Miyashita, HP Devkota, Phenolic compounds and ecdysteroids of Diplazium esculentum (Retz.) Sw. (Athyriaceae) from Japan and their chemotaxonomic significance. Biochem Syst Ecol 2021, 94, 104211.
         | Phenolic compounds and ecdysteroids of Diplazium esculentum (Retz.) Sw. (Athyriaceae) from Japan and their chemotaxonomic significance.Crossref | GoogleScholarGoogle Scholar |

[30]  J Hu, X Shi, X Mao, H Li, J Chen, J Shi, Ecdysteroids from the ethanol extract of Diplopterygium rufopilosum. Phytochem Lett 2014, 8, 73.
         | Ecdysteroids from the ethanol extract of Diplopterygium rufopilosum.Crossref | GoogleScholarGoogle Scholar |

[31]  RG Savchenko, NA Veskina, VN Odinokov, GV Benkovskaya, LV Parfenova, Ecdysteroids: isolation, chemical transformations, and biological activity. Phytochem Rev 2022,
         | Ecdysteroids: isolation, chemical transformations, and biological activity.Crossref | GoogleScholarGoogle Scholar |

[32]  J Jiang, L Tian, L Wang, Y Liu, Y Chen, Phenolic compounds from the fern Glaphyropteridopsis erubescens (Hook.) Ching. Biochem Syst Ecol 2013, 50, 136.
         | Phenolic compounds from the fern Glaphyropteridopsis erubescens (Hook.) Ching.Crossref | GoogleScholarGoogle Scholar |

[33]  Y-H Chen, F-R Chang, Y-J Lin, L Wang, J-F Chen, Y-C Wu, et al. Identification of phenolic antioxidants from Sword Brake fern (Pteris ensiformis Burm.). Food Chem 2007, 105, 48.
         | Identification of phenolic antioxidants from Sword Brake fern (Pteris ensiformis Burm.).Crossref | GoogleScholarGoogle Scholar |

[34]  Y-H Chen, F-R Chang, M-C Lu, P-W Hsieh, M-J Wu, Y-C Du, et al. New benzoyl glucosides and cytotoxic pterosin sesquiterpenes from Pteris ensiformis Burm. Molecules 2008, 13, 255.
         | New benzoyl glucosides and cytotoxic pterosin sesquiterpenes from Pteris ensiformis Burm.Crossref | GoogleScholarGoogle Scholar |

[35]  H-A Wei, T-W Lian, Y-C Tu, J-T Hong, M-C Kou, M-J Wu, Inhibition of low-density lipoprotein oxidation and oxidative burst in polymorphonuclear neutrophils by caffeic acid and hispidin derivatives isolated from sword brake fern (Peris ensiformis Burm.). J Agric Food Chem 2007, 55, 10579.
         | Inhibition of low-density lipoprotein oxidation and oxidative burst in polymorphonuclear neutrophils by caffeic acid and hispidin derivatives isolated from sword brake fern (Peris ensiformis Burm.).Crossref | GoogleScholarGoogle Scholar |

[36]  H-B Hu, X-D Zheng, H Cao, Xanthone O-glycosides from the roots of Pteris multifida. J Chin Chem Soc 2006, 53, 459.
         | Xanthone O-glycosides from the roots of Pteris multifida.Crossref | GoogleScholarGoogle Scholar |

[37]  JW Finnie, PA Windsor, AE Kessell, Neurological diseases of ruminant livestock in Australia. II: Toxic disorders and nutritional deficiencies. Aust Vet J 2011, 89, 247.
         | Neurological diseases of ruminant livestock in Australia. II: Toxic disorders and nutritional deficiencies.Crossref | GoogleScholarGoogle Scholar |

[38]  B V McCleary, BF Chick, The purification and properties of a thiaminase I enzyme from nardoo (Marsilea drummondii). Phytochemistry 1977, 16, 207.
         | The purification and properties of a thiaminase I enzyme from nardoo (Marsilea drummondii).Crossref | GoogleScholarGoogle Scholar |

[39]  K Yamada, M Ojika, H Kigoshi, Ptaquiloside, the major toxin of bracken, and related terpene glycosides: Chemistry, biology and ecology. Nat Prod Rep 2007, 24, 798.
         | Ptaquiloside, the major toxin of bracken, and related terpene glycosides: Chemistry, biology and ecology.Crossref | GoogleScholarGoogle Scholar |

[40]  MP Agnew, DR Lauren, Determination of ptaquiloside in bracken fern (Pteridium esculentum). J Chromatogr A 1991, 538, 462.
         | Determination of ptaquiloside in bracken fern (Pteridium esculentum).Crossref | GoogleScholarGoogle Scholar |

[41]  LH Rasmussen, DR Lauren, BL Smith, HCB Hansen, Variation in ptaquiloside content in bracken (Pteridium esculentum (Forst. f) Cockayne) in New Zealand. N Z Vet J 2008, 56, 304.
         | Variation in ptaquiloside content in bracken (Pteridium esculentum (Forst. f) Cockayne) in New Zealand.Crossref | GoogleScholarGoogle Scholar |

[42]  MT Fletcher, IJ Brock, KG Reichmann, RA McKenzie, BJ Blaney, Norsesquiterpene glycosides in bracken ferns (Pteridium esculentum and Pteridium aquilinum subsp. wightianum) from eastern Australia: reassessed poisoning risk to animals. J Agric Food Chem 2011, 59, 5133.
         | Norsesquiterpene glycosides in bracken ferns (Pteridium esculentum and Pteridium aquilinum subsp. wightianum) from eastern Australia: reassessed poisoning risk to animals.Crossref | GoogleScholarGoogle Scholar |

[43]  DM Potter, MS Baird, Carcinogenic effects of ptaquiloside in bracken fern and related compounds. Br J Cancer 2000, 83, 914.
         | Carcinogenic effects of ptaquiloside in bracken fern and related compounds.Crossref | GoogleScholarGoogle Scholar |

[44]  K Saito, T Nagao, S Takatsuki, K Koyama, S Natori, The sesquiterpenoid carcinogen of bracken fern, and some analogues, from the pteridaceae. Phytochemistry 1990, 29, 1475.
         | The sesquiterpenoid carcinogen of bracken fern, and some analogues, from the pteridaceae.Crossref | GoogleScholarGoogle Scholar |

[45]  N V Kovganko, ZN Kashkan, SN Krivenok, Bioactive compounds of the flora of Belarus. 4. Pterosins A and B from Pteridium aquilinum. Chem Nat Compd 2004, 40, 227.
         | Bioactive compounds of the flora of Belarus. 4. Pterosins A and B from Pteridium aquilinum.Crossref | GoogleScholarGoogle Scholar |

[46]  JF Micheloud, LA Colque-Caro, OG Martinez, EJ Gimeno, D da Silva Freitas Ribeiro, BS Blanco, Bovine enzootic haematuria from consumption of Pteris deflexa and Pteris plumula in northwestern Argentina. Toxicon 2017, 134, 26.
         | Bovine enzootic haematuria from consumption of Pteris deflexa and Pteris plumula in northwestern Argentina.Crossref | GoogleScholarGoogle Scholar |

[47]  YL Huang, PY Yeh, CC Shen, CC Chen, Antioxidant flavonoids from the rhizomes of Helminthostachys zeylanica. Phytochemistry 2003, 64, 1277.
         | Antioxidant flavonoids from the rhizomes of Helminthostachys zeylanica.Crossref | GoogleScholarGoogle Scholar |

[48]  YL Huang, CC Shen, YC Shen, WF Chiou, CC Chen, Anti-inflammatory and antiosteoporosis flavonoids from the rhizomes of Helminthostachys zeylanica. J Nat Prod 2017, 80, 246.
         | Anti-inflammatory and antiosteoporosis flavonoids from the rhizomes of Helminthostachys zeylanica.Crossref | GoogleScholarGoogle Scholar |

[49]  CC Chen, YL Huang, PY Yeh, JC Ou, Cyclized geranyl stilbenes from the rhizomes of Helminthostachys zeylanica. Planta Med 2003, 69, 964.
         | Cyclized geranyl stilbenes from the rhizomes of Helminthostachys zeylanica.Crossref | GoogleScholarGoogle Scholar |

[50]  S Li, P Wang, G Deng, W Yuan, Z Su, Cytotoxic compounds from invasive giant salvinia (Salvinia molesta) against human tumor cells. Bioorg Med Chem Lett 2013, 23, 6682.
         | Cytotoxic compounds from invasive giant salvinia (Salvinia molesta) against human tumor cells.Crossref | GoogleScholarGoogle Scholar |

[51]  S Lima, G Diaz, MAN Diaz, Antibacterial chemical constituent and antiseptic herbal soap from Salvinia auriculata Aubl. Evid Based Complement Alternat Med 2013, 2013, 480509.
         | Antibacterial chemical constituent and antiseptic herbal soap from Salvinia auriculata Aubl.Crossref | GoogleScholarGoogle Scholar |

[52]  GA Purgato, S Lima, JVPB Baeta, VR Pizziolo, GN de Souza, G Diaz-Muñoz, et al. Salvinia auriculata: chemical profile and biological activity against Staphylococcus aureus isolated from bovine mastitis. Braz J Microbiol 2021, 52, 2401.
         | Salvinia auriculata: chemical profile and biological activity against Staphylococcus aureus isolated from bovine mastitis.Crossref | GoogleScholarGoogle Scholar |

[53]  BJ Deans, M De Salas, JA Smith, AC Bissember, Natural products isolated from endemic Tasmanian vascular plants. Aust J Chem 2018, 71, 756.
         | Natural products isolated from endemic Tasmanian vascular plants.Crossref | GoogleScholarGoogle Scholar |

[54]  N Tanaka, H Yuhara, H Wada, T Murakami, RC Cambie, JE Braggins, Phenolic constituents of Pteridium esculentum. Phytochemistry 1993, 32, 1037.
         | Phenolic constituents of Pteridium esculentum.Crossref | GoogleScholarGoogle Scholar |

[55]  T Saito, H Yamane, N Murofushi, N Takahashi, BO Phinney, 4-O-Caffeoylshikimic and 4-O-(p-coumaroyl)shikimic acids from the dwarf tree fern, Dicksonia antarctica. Biosci Biotechnol Biochem 1997, 61, 1397.
         | 4-O-Caffeoylshikimic and 4-O-(p-coumaroyl)shikimic acids from the dwarf tree fern, Dicksonia antarctica.Crossref | GoogleScholarGoogle Scholar |

[56]  BJ Deans, J Just, J Chhetri, LK Burt, JN Smith, NL Kilah, et al. Pressurized hot water extraction as a viable bioprospecting tool: isolation of coumarin natural products from previously unexamined Correa (Rutaceae) species. ChemistrySelect 2017, 2, 2439.
         | Pressurized hot water extraction as a viable bioprospecting tool: isolation of coumarin natural products from previously unexamined Correa (Rutaceae) species.Crossref | GoogleScholarGoogle Scholar |

[57]  A Numata, K Hokimoto, T Takemura, T Katsuno, K Yamamoto, Plant constituents biologically active to insects. V. Antifeedants for the larvae of the yellow butterfly, Eurema hecabe mandarina, in Osmunda japonica. Chem Pharm Bull 1984, 32, 2815.
         | Plant constituents biologically active to insects. V. Antifeedants for the larvae of the yellow butterfly, Eurema hecabe mandarina, in Osmunda japonica.Crossref | GoogleScholarGoogle Scholar |

[58]  A Numata, C Takahashi, R Fujiki, E Kitano, A Kitajima, T Takemura, Plant constituents biologically active to insects. VI. Antifeedants for larvae of the yellow butterfly, Eurema hecabe mandarina, in Osmunda japonica. (2). Chem Pharm Bull 1990, 38, 2862.
         | Plant constituents biologically active to insects. VI. Antifeedants for larvae of the yellow butterfly, Eurema hecabe mandarina, in Osmunda japonica. (2).Crossref | GoogleScholarGoogle Scholar |

[59]  YM Yu, JS Yang, CZ Peng, V Caer, PZ Cong, ZM Zou, et al. Lactones from Angiopteris caudatiformis. J Nat Prod 2009, 72, 921.
         | Lactones from Angiopteris caudatiformis.Crossref | GoogleScholarGoogle Scholar |

[60]  Y Chen, Y Tao, X Lian, L Wang, Y Zhao, J Jiang, et al. Chemical constituents of Angiopteris esculenta including two new natural lactones. Food Chem 2010, 122, 1173.
         | Chemical constituents of Angiopteris esculenta including two new natural lactones.Crossref | GoogleScholarGoogle Scholar |

[61]  H Kamitakahara, T Okayama, Praptiwi, A Agusta, Y Tobimatsu, T Takano, Two-dimensional NMR analysis of Angiopteris evecta rhizome and improved extraction method for angiopteroside. Phytochem Anal 2019, 30, 95.
         | Two-dimensional NMR analysis of Angiopteris evecta rhizome and improved extraction method for angiopteroside.Crossref | GoogleScholarGoogle Scholar |

[62]  T-H Hwang, Y Kashiwada, G-i Nonaka, I Nishioka, 4-Carboxymethyl flavan-3-ols and procyanidins from Davallia divaricata. Phytochemistry 1990, 29, 279.
         | 4-Carboxymethyl flavan-3-ols and procyanidins from Davallia divaricata.Crossref | GoogleScholarGoogle Scholar |

[63]  Y-H Chen, F-R Chang, Y-J Lin, P-W Hsieh, M-J Wu, Y-C Wu, Identification of antioxidants from rhizome of Davallia solida. Food Chem 2008, 107, 684.
         | Identification of antioxidants from rhizome of Davallia solida.Crossref | GoogleScholarGoogle Scholar |

[64]  X Chang, W Li, K Koike, L Wu, T Nikaido, Phenolic constituents from the rhizomes of Dryopteris crassirhizoma. Chem Pharm Bull 2006, 54, 748.
         | Phenolic constituents from the rhizomes of Dryopteris crassirhizoma.Crossref | GoogleScholarGoogle Scholar |

[65]  H Wada, T Kido, N Tanaka, T Murakami, Y Saiki, C-M Chen, Chemical and chemotaxonomical studies of ferns. LXXXI. Characteristic lignans of Blechnaceous ferns. Chem Pharm Bull 1992, 40, 2099.
         | Chemical and chemotaxonomical studies of ferns. LXXXI. Characteristic lignans of Blechnaceous ferns.Crossref | GoogleScholarGoogle Scholar |

[66]  CZ Wang, LB Davin, NG Lewis, Stereoselective phenolic coupling in Blechnum spicant: formation of 8–2′ linked (−)-cis-blechnic, (−)-trans-blechnic and (−)-brainic acids. Chem Commun 2001, 1, 113.
         | Stereoselective phenolic coupling in Blechnum spicant: formation of 8–2′ linked (−)-cis-blechnic, (−)-trans-blechnic and (−)-brainic acids.Crossref | GoogleScholarGoogle Scholar |

[67]  VP Maier, DM Metzler, AF Huber, 3-O-Caffeoylshikimic acid (Dactyllifric acid) and its isomers, a new class of enzymic browning substrates. Biochem Biophys Res Commun 1964, 14, 124.
         | 3-O-Caffeoylshikimic acid (Dactyllifric acid) and its isomers, a new class of enzymic browning substrates.Crossref | GoogleScholarGoogle Scholar |

[68]  M Fukuoka, Chemical and toxicological studies on bracken fern, Pteridium aquilinum var. latiusculum. VI. Isolation of 5-O-caffeoylshikimic acid as an antithiamine factor. Chem Pharm Bull 1982, 30, 3219.
         | Chemical and toxicological studies on bracken fern, Pteridium aquilinum var. latiusculum. VI. Isolation of 5-O-caffeoylshikimic acid as an antithiamine factor.Crossref | GoogleScholarGoogle Scholar |

[69]  M Veit, C Weidner, D Strack, V Wray, L Witte, FC Czygan, The distribution of caffeic acid conjugates in the equisetaceae and some ferns. Phytochemistry 1992, 31, 3483.
         | The distribution of caffeic acid conjugates in the equisetaceae and some ferns.Crossref | GoogleScholarGoogle Scholar |

[70]  C Simmler, D Nikolić, DC Lankin, Y Yu, JB Friesen, RB Van Breemen, et al. Orthogonal analysis underscores the relevance of primary and secondary metabolites in licorice. J Nat Prod 2014, 77, 1806.
         | Orthogonal analysis underscores the relevance of primary and secondary metabolites in licorice.Crossref | GoogleScholarGoogle Scholar |

[71]  G Li, D Nikolic, RB van Breemen, Identification and chemical standardization of licorice raw materials and dietary supplements using UHPLC-MS/MS. J Agric Food Chem 2016, 64, 8062.
         | Identification and chemical standardization of licorice raw materials and dietary supplements using UHPLC-MS/MS.Crossref | GoogleScholarGoogle Scholar |

[72]  T Nakabayashi, Isolation of astragalin and isoquercitrin from bracken, Pteridium aquilinum. J Agric Chem Soc Jpn 1955, 19, 104.

[73]  K Kazuma, N Noda, M Suzuki, Malonylated flavonol glycosides from the petals of Clitoria ternatea. Phytochemistry 2003, 62, 229.
         | Malonylated flavonol glycosides from the petals of Clitoria ternatea.Crossref | GoogleScholarGoogle Scholar |

[74]  T Oikawa, K Hosoyama, Y Hiraga, G Kurono, T Takemoto, The constituents of Osmunda spp. II.1) A new flavonoid glycoside of Osmunda asiatica. Chem Pharm Bull 2002, 43, 2091.

[75]  JT Han, MH Bang, OK Chun, DO Kim, CY Lee, NI Baek, Flavonol glycosides from the aerial parts of Aceriphyllum rossii and their antioxidant activities. Arch Pharm Res 2004, 27, 390.
         | Flavonol glycosides from the aerial parts of Aceriphyllum rossii and their antioxidant activities.Crossref | GoogleScholarGoogle Scholar |

[76]  S Deng, Z Deng, Y Fan, Y Peng, J Li, D Xiong, et al. Isolation and purification of three flavonoid glycosides from the leaves of Nelumbo nucifera (Lotus) by high-speed counter-current chromatography. J Chromatogr B Anal Technol Biomed Life Sci 2009, 877, 2487.
         | Isolation and purification of three flavonoid glycosides from the leaves of Nelumbo nucifera (Lotus) by high-speed counter-current chromatography.Crossref | GoogleScholarGoogle Scholar |

[77]  G Mandalari, A Tomaino, T Arcoraci, M Martorana, VL Turco, F Cacciola, et al. Characterization of polyphenols, lipids and dietary fibre from almond skins (Amygdalus communis L.). J Food Compos Anal 2010, 23, 166.
         | Characterization of polyphenols, lipids and dietary fibre from almond skins (Amygdalus communis L.).Crossref | GoogleScholarGoogle Scholar |

[78]  H Yao, ZX Liao, Q Wu, GQ Lei, ZJ Liu, DF Chen, et al. Antioxidative flavanone glycosides from the branches and leaves of Viscum coloratum. Chem Pharm Bull 2006, 54, 133.
         | Antioxidative flavanone glycosides from the branches and leaves of Viscum coloratum.Crossref | GoogleScholarGoogle Scholar |

[79]  J Malejko, E Nalewajko-Sieliwoniuk, J Nazaruk, J Siniło, A Kojło, Determination of the total polyphenolic content in Cirsium palustre (L.) leaves extracts with manganese (IV) chemiluminescence detection. Food Chem 2014, 152, 155.
         | Determination of the total polyphenolic content in Cirsium palustre (L.) leaves extracts with manganese (IV) chemiluminescence detection.Crossref | GoogleScholarGoogle Scholar |

[80]  A Mun’im, O Negishi, T Ozawa, Antioxidative compounds from Crotalaria sessiliflora. Biosci Biotechnol Biochem 2003, 67, 410.
         | Antioxidative compounds from Crotalaria sessiliflora.Crossref | GoogleScholarGoogle Scholar |

[81]  G Cioffi, LM Escobar, A Braca, N De Tommasi, Antioxidant chalcone glycosides and flavanones from Maclura (Chlorophora) tinctoria. J Nat Prod 2003, 66, 1061.
         | Antioxidant chalcone glycosides and flavanones from Maclura (Chlorophora) tinctoria.Crossref | GoogleScholarGoogle Scholar |

[82]  H Ismaili, S Sosa, D Brkic, S Fkih-Tetouani, A Ilidrissi, D Touati, et al. Topical anti-inflammatory activity of extracts and compounds from Thymus broussonettii. J Pharm Pharmacol 2010, 54, 1137.
         | Topical anti-inflammatory activity of extracts and compounds from Thymus broussonettii.Crossref | GoogleScholarGoogle Scholar |

[83]  JM Jarrett, AH Williams, The flavonoid glycosides of Salix purpurea. Phytochemistry 1967, 6, 1585.
         | The flavonoid glycosides of Salix purpurea.Crossref | GoogleScholarGoogle Scholar |

[84]  Q Hu, DD Zhang, L Wang, H Lou, D Ren, Eriodictyol-7-O-glucoside, a novel Nrf2 activator, confers protection against cisplatin-induced toxicity. Food Chem Toxicol 2012, 50, 1927.
         | Eriodictyol-7-O-glucoside, a novel Nrf2 activator, confers protection against cisplatin-induced toxicity.Crossref | GoogleScholarGoogle Scholar |

[85]  J Pan, S Zhang, L Yan, J Tai, Q Xiao, K Zou, et al. Separation of flavanone enantiomers and flavanone glucoside diastereomers from Balanophora involucrata Hook. f. by capillary electrophoresis and reversed-phase high-performance liquid chromatography on a C18 column. J Chromatogr A 2008, 1185, 117.
         | Separation of flavanone enantiomers and flavanone glucoside diastereomers from Balanophora involucrata Hook. f. by capillary electrophoresis and reversed-phase high-performance liquid chromatography on a C18 column.Crossref | GoogleScholarGoogle Scholar |

[86]  C Ma, Y Zhou, AR Liu, Determination of chlorogenic acid and eriodictyol-7-O-β-d-glucuronide in Pyrrosia by RP-HPLC. Yaoxue Xuebao 2003, 38, 286.

[87]  X Jing, D Ren, X Wei, H Shi, X Zhang, RG Perez, et al. Eriodictyol-7-O-glucoside activates Nrf2 and protects against cerebral ischemic injury. Toxicol Appl Pharmacol 2013, 273, 672.
         | Eriodictyol-7-O-glucoside activates Nrf2 and protects against cerebral ischemic injury.Crossref | GoogleScholarGoogle Scholar |

[88]  R Chen, QL Qi, MT Wang, QY Li, Therapeutic potential of naringin: an overview. Pharm Biol 2016, 54, 3203.
         | Therapeutic potential of naringin: an overview.Crossref | GoogleScholarGoogle Scholar |

[89]  S Bharti, N Rani, B Krishnamurthy, DS Arya, Preclinical evidence for the pharmacological actions of naringin: A review. Planta Med 2014, 80, 437.
         | Preclinical evidence for the pharmacological actions of naringin: A review.Crossref | GoogleScholarGoogle Scholar |

[90]  DC Abeysinghe, X Li, CD Sun, WS Zhang, CH Zhou, KS Chen, Bioactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species. Food Chem 2007, 104, 1338.
         | Bioactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species.Crossref | GoogleScholarGoogle Scholar |

[91]  MA Alam, N Subhan, MM Rahman, SJ Uddin, HM Reza, SD Sarker, Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv Nutr 2014, 5, 404.
         | Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action.Crossref | GoogleScholarGoogle Scholar |

[92]  S Yusof, HM Ghazali, GS King, Naringin content in local citrus fruits. Food Chem 1990, 37, 113.
         | Naringin content in local citrus fruits.Crossref | GoogleScholarGoogle Scholar |

[93]  GC Jagetia, VA Venkatesha, TK Reddy, Naringin, a citrus flavonone, protects against radiation-induced chromosome damage in mouse bone marrow. Mutagenesis 2003, 18, 337.
         | Naringin, a citrus flavonone, protects against radiation-induced chromosome damage in mouse bone marrow.Crossref | GoogleScholarGoogle Scholar |

[94]  S Sharma, A Ali, J Ali, JK Sahni, S Baboota, Rutin: Therapeutic potential and recent advances in drug delivery. Expert Opin Investig Drugs 2013, 22, 1063.
         | Rutin: Therapeutic potential and recent advances in drug delivery.Crossref | GoogleScholarGoogle Scholar |

[95]  LS Chua, A review on plant-based rutin extraction methods and its pharmacological activities. J Ethnopharmacol 2013, 150, 805.
         | A review on plant-based rutin extraction methods and its pharmacological activities.Crossref | GoogleScholarGoogle Scholar |

[96]  F Imperato, A flavanone glycoside from the fronds of Ceterach officinarum. Phytochemistry 1983, 22, 312.
         | A flavanone glycoside from the fronds of Ceterach officinarum.Crossref | GoogleScholarGoogle Scholar |

[97]  C Socolsky, A Salvatore, Y Asakawa, A Bardón, Bioactive new bitter-tasting p-hydroxystyrene glycoside and otherconstituents from the fern Elaphoglossum spathulatum. Arkivoc 2003, 2003, 347.
         | Bioactive new bitter-tasting p-hydroxystyrene glycoside and otherconstituents from the fern Elaphoglossum spathulatum.Crossref | GoogleScholarGoogle Scholar |

[98]  T-H Yang, Y-C Lee, H-N Chung, Constitutents of Drynaria fortunei. Taiwan Yaoxue Zazhi 1966, 18, 38.

[99]  J De Britto, VS Manickam, S Gopalakrishnan, T Ushioda, N Tanaka, Determination of aglycone chirality in dihydroflavonol 3-O-a-L-Rhamnosdes by 1H-NMR spectroscopy. Chem Pharm Bull 1995, 43, 338.
         | Determination of aglycone chirality in dihydroflavonol 3-O-a-L-Rhamnosdes by 1H-NMR spectroscopy.Crossref | GoogleScholarGoogle Scholar |

[100]  DM Grochowski, M Locatelli, S Granica, F Cacciagrano, M Tomczyk, A review on the dietary flavonoid tiliroside. Compr Rev Food Sci Food Saf 2018, 17, 1395.
         | A review on the dietary flavonoid tiliroside.Crossref | GoogleScholarGoogle Scholar |

[101]  M Kuroyanagi, M Fukuoka, K Yoshihira, S Natori, K Yamasaki, Confirmation of the structure of tiliroside, an acylated kaemferol glycoside, by 13C-nuclear magnetic resonance. Chem Pharm Bull 1978, 26, 3594.
         | Confirmation of the structure of tiliroside, an acylated kaemferol glycoside, by 13C-nuclear magnetic resonance.Crossref | GoogleScholarGoogle Scholar |

[102]  C-Y Wang, AM Pamukcu, GT Bryan, Isolation of fumaric acid, succinic acid, astragalin, isoquercitrin and tiliroside from Pteridium auilinum. Phytochemistry 1973, 12, 2298.
         | Isolation of fumaric acid, succinic acid, astragalin, isoquercitrin and tiliroside from Pteridium auilinum.Crossref | GoogleScholarGoogle Scholar |

[103]  S Devi, V Kumar, Comprehensive structural analysis of cis- and trans-tiliroside and quercetrin from Malvastrum coromandelianum and their antioxidant activities. Arab J Chem 2020, 13, 1720.
         | Comprehensive structural analysis of cis- and trans-tiliroside and quercetrin from Malvastrum coromandelianum and their antioxidant activities.Crossref | GoogleScholarGoogle Scholar |

[104]  W Qiao, C Zhao, N Qin, HY Zhai, HQ Duan, Identification of trans-tiliroside as active principle with anti-hyperglycemic, anti-hyperlipidemic and antioxidant effects from Potentilla chinesis. J Ethnopharmacol 2011, 135, 515.
         | Identification of trans-tiliroside as active principle with anti-hyperglycemic, anti-hyperlipidemic and antioxidant effects from Potentilla chinesis.Crossref | GoogleScholarGoogle Scholar |

[105]  R Velagapudi, M Aderogba, OA Olajide, Tiliroside, a dietary glycosidic flavonoid, inhibits TRAF-6/NF-κB/p38-mediated neuroinflammation in activated BV2 microglia. Biochim Biophys Acta - Gen Subj 2014, 1840, 3311.
         | Tiliroside, a dietary glycosidic flavonoid, inhibits TRAF-6/NF-κB/p38-mediated neuroinflammation in activated BV2 microglia.Crossref | GoogleScholarGoogle Scholar |

[106]  Y Zhu, Y Zhang, Y Liu, H Chu, H Duan, Synthesis and biological activity of trans-tiliroside derivatives as potent anti-diabetic agents. Molecules 2010, 15, 9174.
         | Synthesis and biological activity of trans-tiliroside derivatives as potent anti-diabetic agents.Crossref | GoogleScholarGoogle Scholar |

[107]  J Just, BJ Deans, WJ Olivier, B Paull, AC Bissember, JA Smith, New method for the rapid extraction of natural products: efficient isolation of shikimic acid from star anise. Org Lett 2015, 17, 2428.
         | New method for the rapid extraction of natural products: efficient isolation of shikimic acid from star anise.Crossref | GoogleScholarGoogle Scholar |

[108]  CC Ho, BJ Deans, J Just, GG Warr, S Wilkinson, JA Smith, et al. Employing pressurized hot water extraction (PHWE) to explore natural products chemistry in the undergraduate laboratory. J Vis Exp 2018, 141, 1.
         | Employing pressurized hot water extraction (PHWE) to explore natural products chemistry in the undergraduate laboratory.Crossref | GoogleScholarGoogle Scholar |

[109]  BJ Deans, J Just, JA Smith, AC Bissember, Development and applications of water-based extraction methods in natural products isolation chemistry. Asian J Org Chem 2020, 9, 1144.
         | Development and applications of water-based extraction methods in natural products isolation chemistry.Crossref | GoogleScholarGoogle Scholar |

[110]  GR Fulmer, AJM Miller, NH Sherden, HE Gottlieb, A Nudelman, BM Stoltz, et al. NMR chemical shifts of trace impurities: Common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 2010, 29, 2176.
         | NMR chemical shifts of trace impurities: Common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist.Crossref | GoogleScholarGoogle Scholar |

[111]  EJ Chang, WJ Lee, SH Cho, SW Choi, Proliferative effects of flavan-3-ols and propelargonidins from rhizomes of Drynaria fortunei on MCF-7 and osteoblastic cells. Arch Pharm Res 2003, 26, 620.
         | Proliferative effects of flavan-3-ols and propelargonidins from rhizomes of Drynaria fortunei on MCF-7 and osteoblastic cells.Crossref | GoogleScholarGoogle Scholar |

[112]  T Akiyama, M Yamada, T Yamada, T Maitani, Naringin glycosides α-glucosylated on ring B found in the natural food additive, enzymatically modified naringin. Biosci Biotechnol Biochem 2000, 64, 2246.
         | Naringin glycosides α-glucosylated on ring B found in the natural food additive, enzymatically modified naringin.Crossref | GoogleScholarGoogle Scholar |

[113]  LB Davin, CZ Wang, GL Helms, NG Lewis, [13C]-Specific labeling of 8-2′ linked (−)-cis-blechnic, (−)-trans-blechnic and (−)-brainic acids in the fern Blechnum spicant. Phytochemistry 2003, 62, 501.
         | [13C]-Specific labeling of 8-2′ linked (−)-cis-blechnic, (−)-trans-blechnic and (−)-brainic acids in the fern Blechnum spicant.Crossref | GoogleScholarGoogle Scholar |

[114]  H Matsuura, M Amano, J Kawabata, et al. Isolation and measurement of quercetin glucosides in flower buds of japanese butterbur (Petasites japonicus subsp. Gigantea kitam.). Biosci Biotechnol Biochem 2002, 66, 1571.
         | Isolation and measurement of quercetin glucosides in flower buds of japanese butterbur (Petasites japonicus subsp. Gigantea kitam.).Crossref | GoogleScholarGoogle Scholar |

[115]  JH Lee, CH Ku, N-I Baek, S-H Kim, HW Park, DK Kim, Phytochemical constituents from Diodia teres. Arch Pharm Res 2004, 27, 40.
         | Phytochemical constituents from Diodia teres.Crossref | GoogleScholarGoogle Scholar |

[116]  M Zor, S Aydin, ND Güner, N Başaran, AA Başaran, Antigenotoxic properties of Paliurus spina-christi Mill fruits and their active compounds. BMC Complement Altern Med 2017, 17, 229.
         | Antigenotoxic properties of Paliurus spina-christi Mill fruits and their active compounds.Crossref | GoogleScholarGoogle Scholar |

[117]  M Kaouadji, J-M Morand, J Garcia, Further acylated Kaempferol rhamnosides from Platanus acerifolia buds. J Nat Prod 1993, 56, 1618.
         | Further acylated Kaempferol rhamnosides from Platanus acerifolia buds.Crossref | GoogleScholarGoogle Scholar |

[118]  F Calzada, R Lopéz, M Meckes, R Cedillo-Rivera, Flavonoids of the aerial parts of Helianthemum glomeratum. Pharm Biol 1995, 33, 351.
         | Flavonoids of the aerial parts of Helianthemum glomeratum.Crossref | GoogleScholarGoogle Scholar |