Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

An icosanuclear silver(I) cluster supported by bis(thiosemicarbazonato) ligands

Brett M. Paterson https://orcid.org/0000-0002-7768-811X A , Jonathan M. White https://orcid.org/0000-0002-0707-6257 A * and Paul S. Donnelly https://orcid.org/0000-0001-5373-0080 A *
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Bio21 Molecular Science Biotechnology Institute, University of Melbourne, Melbourne, 3010, Vic., Australia.


Handling Editor: George Koutsantonis

Australian Journal of Chemistry 75(9) 631-635 https://doi.org/10.1071/CH21335
Submitted: 15 December 2021  Accepted: 17 January 2022   Published: 10 March 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

The synthesis and structural characterisation of an icosanuclear silver(I) cluster complex is reported here. The complex includes twenty silver(I) ions supported by eighteen bis(thiosemicarbazonato) ligands. The cluster of silver(I) ions involves several close Ag⋯Ag contacts suggesting some degree of argentophilic interactions and the bis(thiosemicarbazonato) ligands are present in three different conformations highlighting the ability of thiosemicarbazone ligands to coordinate to metal ions in different modes.

Keywords: argentophillic interactions, cluster of 20 silver ions, cluster, silver, sulfur ligands, thiosemicarbazone.


References

[1]  (a) BM Paterson, PS Donnelly, Copper complexes of bis(thiosemicarbazones): from chemotherapeutics to diagnostic and therapeutic radiopharmaceuticals. Chem Soc Rev 2011, 40, 3005.
         | Copper complexes of bis(thiosemicarbazones): from chemotherapeutics to diagnostic and therapeutic radiopharmaceuticals.Crossref | GoogleScholarGoogle Scholar | 21409228PubMed |
      (b) TS Lobana, S Khanna, R Sharma, G Hundal, R Sultana, M Chaudhary, et al. Versatility of Thiosemicarbazones in the Construction of Monomers, Dimers and Hydrogen-Bonded Networks of Silver(I) Complexes. Cryst Growth Des 2008, 8, 1203.
         | Versatility of Thiosemicarbazones in the Construction of Monomers, Dimers and Hydrogen-Bonded Networks of Silver(I) Complexes.Crossref | GoogleScholarGoogle Scholar |

[2]  BM Paterson, KF White, JM White, BF Abrahams, PS Donnelly, Guest-induced Assembly of Bis(thiosemicarbazonato) Zinc(II) Coordination Nanotubes. Angew Chem, Int Ed 2017, 56, 8370.
         | Guest-induced Assembly of Bis(thiosemicarbazonato) Zinc(II) Coordination Nanotubes.Crossref | GoogleScholarGoogle Scholar |

[3]  Lancashire RK. Silver. In: Wilkinson G, Gillard RD, McCleverty JA, editors. In: Comprehensive Coordination Chemistry. Pergamon; 1987. Vol 5. pp. 775–859.

[4]  LJ Ashfield, AR Cowley, JR Dilworth, PS Donnelly, Functionalized Thiosemicarbazone Clusters of Copper(I) and Silver(I). Inorg Chem 2004, 43, 4121.
         |  Functionalized Thiosemicarbazone Clusters of Copper(I) and Silver(I).Crossref | GoogleScholarGoogle Scholar | 15236522PubMed |

[5]  (a) K Onodera, NC Kasuga, T Takashima, A Hara, A Amano, H Murakami, et al. Synthesis, reaction and structure of a highly light-stable silver(I) cluster with an Ag4S4N4 core having a tridentate 4N-morpholinyl-2-acetylpyridine thiosemicarbazone ligand: Use of water-soluble silver(I) carboxylates as a silver(I) source. Dalton Trans 2007, 3646.
         | Synthesis, reaction and structure of a highly light-stable silver(I) cluster with an Ag4S4N4 core having a tridentate 4N-morpholinyl-2-acetylpyridine thiosemicarbazone ligand: Use of water-soluble silver(I) carboxylates as a silver(I) source.Crossref | GoogleScholarGoogle Scholar | 17700827PubMed |
      (b) MR Bermejo, AM Gonzalez-Noya, M Martinez-Calvo, R Pedrido, MJ Romero, MV Lopez, Checking the route to cluster helicates. Eur J Inorg Chem 2008, 3852.
         | Checking the route to cluster helicates.Crossref | GoogleScholarGoogle Scholar |

[6]  MR Bermejo, AM González-Noya, RM Pedrido, MJ Romero, M Vázquez, Route to Cluster Helicates. Angew Chem Int Ed 2005, 44, 4182.
         | Route to Cluster Helicates.Crossref | GoogleScholarGoogle Scholar | 15929158PubMed |

[7]  (a) A Castineiras, R Pedrido, Factors Involved in the Nuclearity of Silver Thiosemicarbazone Clusters: Cocrystallization of Two Different Sized Tetranuclear Silver(I) Clusters Derived from a Phosphinothiosemicarbazone Ligand. Inorg Chem 2008, 47, 5534.
         | Factors Involved in the Nuclearity of Silver Thiosemicarbazone Clusters: Cocrystallization of Two Different Sized Tetranuclear Silver(I) Clusters Derived from a Phosphinothiosemicarbazone Ligand.Crossref | GoogleScholarGoogle Scholar | 18533649PubMed |
      (b) TS Lobana, S Khanna, G Hundal, B-J Liaw, CW Liu, The influence of substituents at the C2 carbon of thiosemicarbazones on bonding and nuclearity of silver(I) complexes. Polyhedron 2008, 27, 2251.
         | The influence of substituents at the C2 carbon of thiosemicarbazones on bonding and nuclearity of silver(I) complexes.Crossref | GoogleScholarGoogle Scholar |
      (c) A Castineiras, R Pedrido, Novel Fluorescent Cationic Silver Thiosemicarbazone Clusters Containing Different Eight-Membered Ag4S4 Metallacycles. Inorg Chem 2009, 48, 4847.
         | Novel Fluorescent Cationic Silver Thiosemicarbazone Clusters Containing Different Eight-Membered Ag4S4 Metallacycles.Crossref | GoogleScholarGoogle Scholar |
      (d) TS Lobana, S Khanna, G Hundal, P Kaur, B Thakur, S Attri, et al. Coinage metal derivatives of salicylaldehyde thiosemicarbazones: Synthesis, structures, bond isomerism and H-bonded networks. Polyhedron 2009, 28, 1583.
         | Coinage metal derivatives of salicylaldehyde thiosemicarbazones: Synthesis, structures, bond isomerism and H-bonded networks.Crossref | GoogleScholarGoogle Scholar |

[8]  DES Silva, AB Becceneri, MC Solcia, JVB Santiago, MB Moreira, JA Gomes Neto, et al. Cytotoxic and apoptotic effects of ternary silver(I) complexes bearing 2-formylpyridine thiosemicarbazones and 1,10-phenanthroline. Dalton Trans 2020, 49, 5264.
         | Cytotoxic and apoptotic effects of ternary silver(I) complexes bearing 2-formylpyridine thiosemicarbazones and 1,10-phenanthroline.Crossref | GoogleScholarGoogle Scholar | 32242564PubMed |

[9]  BW Budesinsky, J Svec, Photometric determination of silver and mercury with glyoxal dithiosemicarbazone. Anal Chim Acta 1971, 55, 115.
         | Photometric determination of silver and mercury with glyoxal dithiosemicarbazone.Crossref | GoogleScholarGoogle Scholar |

[10]  A Castineiras, N Fernandez-Hermida, I Garcia-Santos, JL Perez-Lustres, I Rodriguez-Gonzalez, Luminescent complexes of silver(I) with pyridylbis(3-hexamethyleneiminyl thiosemicarbazone): effect of the counterion on the nuclearity. Dalton Trans 2012, 41, 3787.
         |  Luminescent complexes of silver(I) with pyridylbis(3-hexamethyleneiminyl thiosemicarbazone): effect of the counterion on the nuclearity.Crossref | GoogleScholarGoogle Scholar | 22354121PubMed |

[11]  AL Spek, PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr C 2015, 71, 9.
         | PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors.Crossref | GoogleScholarGoogle Scholar |

[12]  M Jansen, Homoatomic d10–d10 Interactions: Their Effects on Structure and Chemical and Physical Properties. Angew Chem Int Ed 1987, 26, 1098.
         | Homoatomic d10–d10 Interactions: Their Effects on Structure and Chemical and Physical Properties.Crossref | GoogleScholarGoogle Scholar |

[13]  FA French, BL Freelander, Carcinostatic action of polycarbonyl compounds and their derivatives. IV. Glyoxal bis(thiosemicarbazone) and derivatives. Cancer Res 1958, 18, 1290.
         | 13608436PubMed |

[14]  GM Sheldrick, Crystal structure refinement with SHELXL. Acta Crystallogr C 2015, 71, 3.
         | Crystal structure refinement with SHELXL.Crossref | GoogleScholarGoogle Scholar |

[15]  LJ Farrugia, WinGX and ORTEP for Windows: an update. J Appl Crystallogr 2012, 45, 849.
         | WinGX and ORTEP for Windows: an update.Crossref | GoogleScholarGoogle Scholar |