A new divalent organoeuropium(II) fluoride and serendipitous discovery of an alkoxide complex from pentaphenylcyclopentadiene precursors†
Angus C. G. Shephard A , Aymeric Delon A B , Rory P. Kelly C , Zhifang Guo A , Sylviane Chevreux B D , Gilles Lemercier B , Glen B. Deacon C , Galina A. Dushenko E , Florian Jaroschik F * and Peter C. Junk A *A College of Science & Engineering, James Cook University, Townsville, Qld 4811, Australia.
B ICMR, UMR CNRS 7312, Université de Reims Champagne-Ardenne, Reims, France.
C School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
D Institut de Recherche de Chimie Paris, UMR CNRS 8247, Chimie ParisTech, PSL University, 75005 Paris, France.
E Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, 344090, Russia.
F ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
Handling Editor: George Koutsantonis
Australian Journal of Chemistry 75(9) 746-753 https://doi.org/10.1071/CH21324
Submitted: 6 December 2021 Accepted: 17 February 2022 Published: 29 March 2022
© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)
Abstract
From the redox-transmetallation protolysis (RTP) reaction of europium metal, Hg(C6F5)2 and pentaphenylcyclopentadiene, we isolated and crystallographically characterised small amounts of the first divalent europium fluoride half-sandwich complex [Eu(C5Ph5)(μ-F)(thf)2]2 (1). Subsequently, a rational synthesis of this complex from in situ formed [EuF2(thf)n] and [Eu(C5Ph5)2] was carried out. In addition, the new divalent Eu alkoxide complex [Eu(OC5Ph5*)2(thf)4] (2) (OC5Ph5* = 2,3,4,5,5 pentaphenylcyclopenta-1,3-dienolate) was identified by X-ray diffraction analysis, in which an intriguing phenyl group migration in the cyclopentadiene ligand occurred. This complex was shown to be derived from small impurities of 1,2,3,4,5-pentaphenylcyclopenta-1,3-dienol (C5Ph5OH) in the C5Ph5H starting material and was then synthesised on a larger scale. Density functional theory calculations provided evidence for the facile phenyl group migration observed in the cyclopentadienolate ring.
Keywords: 2,3,4,5,5-pentaphenylcyclopenta-1,3-dienolate, bis(pentafluorophenyl)mercury, C–F activation, DFT calculations, Europium metal, pentaphenylcyclopentadiene, redox transmetallation/protolysis.
References
[1] LD Field, CM Lindall, AF Masters, GKB Clentsmith, Coord Chem Rev 2011, 255, 1733.| Crossref | GoogleScholarGoogle Scholar |
[2] R Stefak, AM Sirven, S Fukumoto, H Nakagawa, G Rapenne, Coord Chem Rev 2015, 287, 79.
| Crossref | GoogleScholarGoogle Scholar |
[3] MC Warner, J-E Baeckvall, Acc Chem Res 2013, 46, 2545.
| Crossref | GoogleScholarGoogle Scholar | 23721454PubMed |
[4] N Kataoka, Q Shelby, JP Stambuli, JF Hartwig, J Org Chem 2002, 67, 5553.
| Crossref | GoogleScholarGoogle Scholar | 12153253PubMed |
[5] C Ruspic, JR Moss, M Schürmann, S Harder, Angew Chem Int Ed 2008, 47, 2121.
| Crossref | GoogleScholarGoogle Scholar |
[6] S Harder, D Naglav, C Ruspic, C Wickleder, M Adlung, W Hermes, M Eul, R Pöttgen, DB Rego, F Poineau, KR Czerwinski, RH Herber, I Nowik, Chem Eur J 2013, 19, 12272.
| Crossref | GoogleScholarGoogle Scholar | 23907896PubMed |
[7] NJC Van Velzen, S Harder, Organometallics 2018, 37, 2263.
| Crossref | GoogleScholarGoogle Scholar |
[8] CM Forsyth, GB Deacon, LD Field, C Jones, PC Junk, DL Kay, AF Masters, AF Richards, Chem Commun 2006, 1003.
| Crossref | GoogleScholarGoogle Scholar |
[9] GB Deacon, CM Forsyth, F Jaroschik, PC Junk, DL Kay, T Maschmeyer, AF Masters, J Wang, LD Field, Organometallics 2008, 27, 4772.
| Crossref | GoogleScholarGoogle Scholar |
[10] RP Kelly, TDM Bell, RP Cox, DP Daniels, GB Deacon, F Jaroschik, PC Junk, XF Le Goff, G Lemercier, A Martinez, J Wang, D Werner, Organometallics 2015, 34, 5624.
| Crossref | GoogleScholarGoogle Scholar |
[11] Y Wang, J Cheng, New J Chem 2020, 44, 17333.
| Crossref | GoogleScholarGoogle Scholar |
[12] Y Wang, I Del Rosal, G Qin, L Zhao, L Maron, X Shi, J Cheng, Chem Commun 2021, 57, 7766.
| Crossref | GoogleScholarGoogle Scholar |
[13] G Qin, Y Wang, X Shi, I Del Rosal, L Maron, J Cheng, Chem Commun 2019, 55, 8560.
| Crossref | GoogleScholarGoogle Scholar |
[14] Z Guo, R Huo, YQ Tan, V Blair, GB Deacon, PC Junk, Coord Chem Rev 2020, 415, 213232.
| Crossref | GoogleScholarGoogle Scholar |
[15] GB Deacon, F Jaroschik, PC Junk, RP Kelly, Chem Commun 2014, 50, 10655.
| Crossref | GoogleScholarGoogle Scholar |
[16] RD Shannon, Acta Crystallogr Sect A 1976, 32, 751.
| Crossref | GoogleScholarGoogle Scholar |
[17] J Marçalo, AP De Matos, Polyhedron 1989, 8, 2431.
| Crossref | GoogleScholarGoogle Scholar |
[18] The survey was performed with CCDC: ConQuest 2020.3.0.
[19] GW Rabe, IA Guzei, AL Rheingold, Inorg Chem 1997, 36, 4914.
| Crossref | GoogleScholarGoogle Scholar |
[20] Z Guo, VL Blair, GB Deacon, PC Junk, Chem Eur J 2022, e202103065.
[21] GB Deacon, S Hamidi, PC Junk, RP Kelly, J Wang, Eur J Inorg Chem 2014, 3, 460.
| Crossref | GoogleScholarGoogle Scholar |
[22] GB Oldaker, TA Perfetti, MA Ogliaruso, J Org Chem 1980, 45, 3910.
| Crossref | GoogleScholarGoogle Scholar |
[23] JW Chambers, MD Rausch, AJ Baskar, SG Bott, JL Atwood, Organometallics 1986, 5, 1635.
| Crossref | GoogleScholarGoogle Scholar |
[24] CW Spangler, Chem Rev 1976, 76, 187.
| Crossref | GoogleScholarGoogle Scholar |
[25] HK Gupta, M Stradiotto, DW Hughes, MJ McGlinchey, J Org Chem 2000, 65, 3652.
| Crossref | GoogleScholarGoogle Scholar | 10864748PubMed |
[26] VI Minkin, IE Mikhailov, GA Dushenko, A Zschunke, Russ Chem Rev 2003, 72, 867.
[27] Deacon GB, Cosgriff JE, Lawrenz ET, Forsyth CM, Wilkinson DL. Section 2.3: Organolanthanide(II) Complexes, In Herrmann WA, editor. Herrmann-Brauer, Synthetic Methods of Organometallic and Inorganic Chemistry. Stuttgart: Thieme; 1997, vol. 6, p. 48.
[28] CrysAlisPRO v.39. Yarnton, Oxfordshire, England: Agilent Technologies Ltd.
[29] GM Sheldrick, Acta Crystallogr Sect C Struct Chem 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar |
[30] LJ Barbour, J Supramol Chem 2001, 1, 189.
| Crossref | GoogleScholarGoogle Scholar |