Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

A new divalent organoeuropium(II) fluoride and serendipitous discovery of an alkoxide complex from pentaphenylcyclopentadiene precursors

Angus C. G. Shephard A , Aymeric Delon A B , Rory P. Kelly C , Zhifang Guo A , Sylviane Chevreux B D , Gilles Lemercier B , Glen B. Deacon C , Galina A. Dushenko E , Florian Jaroschik F * and Peter C. Junk https://orcid.org/0000-0002-0683-8918 A *
+ Author Affiliations
- Author Affiliations

A College of Science & Engineering, James Cook University, Townsville, Qld 4811, Australia.

B ICMR, UMR CNRS 7312, Université de Reims Champagne-Ardenne, Reims, France.

C School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

D Institut de Recherche de Chimie Paris, UMR CNRS 8247, Chimie ParisTech, PSL University, 75005 Paris, France.

E Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, 344090, Russia.

F ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.


Handling Editor: George Koutsantonis

Australian Journal of Chemistry 75(9) 746-753 https://doi.org/10.1071/CH21324
Submitted: 6 December 2021  Accepted: 17 February 2022   Published: 29 March 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

From the redox-transmetallation protolysis (RTP) reaction of europium metal, Hg(C6F5)2 and pentaphenylcyclopentadiene, we isolated and crystallographically characterised small amounts of the first divalent europium fluoride half-sandwich complex [Eu(C5Ph5)(μ-F)(thf)2]2 (1). Subsequently, a rational synthesis of this complex from in situ formed [EuF2(thf)n] and [Eu(C5Ph5)2] was carried out. In addition, the new divalent Eu alkoxide complex [Eu(OC5Ph5*)2(thf)4] (2) (OC5Ph5* = 2,3,4,5,5 pentaphenylcyclopenta-1,3-dienolate) was identified by X-ray diffraction analysis, in which an intriguing phenyl group migration in the cyclopentadiene ligand occurred. This complex was shown to be derived from small impurities of 1,2,3,4,5-pentaphenylcyclopenta-1,3-dienol (C5Ph5OH) in the C5Ph5H starting material and was then synthesised on a larger scale. Density functional theory calculations provided evidence for the facile phenyl group migration observed in the cyclopentadienolate ring.

Keywords: 2,3,4,5,5-pentaphenylcyclopenta-1,3-dienolate, bis(pentafluorophenyl)mercury, C–F activation, DFT calculations, Europium metal, pentaphenylcyclopentadiene, redox transmetallation/protolysis.


References

[1]  LD Field, CM Lindall, AF Masters, GKB Clentsmith, Coord Chem Rev 2011, 255, 1733.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  R Stefak, AM Sirven, S Fukumoto, H Nakagawa, G Rapenne, Coord Chem Rev 2015, 287, 79.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  MC Warner, J-E Baeckvall, Acc Chem Res 2013, 46, 2545.
         | Crossref | GoogleScholarGoogle Scholar | 23721454PubMed |

[4]  N Kataoka, Q Shelby, JP Stambuli, JF Hartwig, J Org Chem 2002, 67, 5553.
         | Crossref | GoogleScholarGoogle Scholar | 12153253PubMed |

[5]  C Ruspic, JR Moss, M Schürmann, S Harder, Angew Chem Int Ed 2008, 47, 2121.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  S Harder, D Naglav, C Ruspic, C Wickleder, M Adlung, W Hermes, M Eul, R Pöttgen, DB Rego, F Poineau, KR Czerwinski, RH Herber, I Nowik, Chem Eur J 2013, 19, 12272.
         | Crossref | GoogleScholarGoogle Scholar | 23907896PubMed |

[7]  NJC Van Velzen, S Harder, Organometallics 2018, 37, 2263.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  CM Forsyth, GB Deacon, LD Field, C Jones, PC Junk, DL Kay, AF Masters, AF Richards, Chem Commun 2006, 1003.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  GB Deacon, CM Forsyth, F Jaroschik, PC Junk, DL Kay, T Maschmeyer, AF Masters, J Wang, LD Field, Organometallics 2008, 27, 4772.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  RP Kelly, TDM Bell, RP Cox, DP Daniels, GB Deacon, F Jaroschik, PC Junk, XF Le Goff, G Lemercier, A Martinez, J Wang, D Werner, Organometallics 2015, 34, 5624.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  Y Wang, J Cheng, New J Chem 2020, 44, 17333.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  Y Wang, I Del Rosal, G Qin, L Zhao, L Maron, X Shi, J Cheng, Chem Commun 2021, 57, 7766.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  G Qin, Y Wang, X Shi, I Del Rosal, L Maron, J Cheng, Chem Commun 2019, 55, 8560.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  Z Guo, R Huo, YQ Tan, V Blair, GB Deacon, PC Junk, Coord Chem Rev 2020, 415, 213232.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  GB Deacon, F Jaroschik, PC Junk, RP Kelly, Chem Commun 2014, 50, 10655.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  RD Shannon, Acta Crystallogr Sect A 1976, 32, 751.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  J Marçalo, AP De Matos, Polyhedron 1989, 8, 2431.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  The survey was performed with CCDC: ConQuest 2020.3.0.

[19]  GW Rabe, IA Guzei, AL Rheingold, Inorg Chem 1997, 36, 4914.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  Z Guo, VL Blair, GB Deacon, PC Junk, Chem Eur J 2022, e202103065.

[21]  GB Deacon, S Hamidi, PC Junk, RP Kelly, J Wang, Eur J Inorg Chem 2014, 3, 460.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  GB Oldaker, TA Perfetti, MA Ogliaruso, J Org Chem 1980, 45, 3910.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  JW Chambers, MD Rausch, AJ Baskar, SG Bott, JL Atwood, Organometallics 1986, 5, 1635.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  CW Spangler, Chem Rev 1976, 76, 187.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  HK Gupta, M Stradiotto, DW Hughes, MJ McGlinchey, J Org Chem 2000, 65, 3652.
         | Crossref | GoogleScholarGoogle Scholar | 10864748PubMed |

[26]  VI Minkin, IE Mikhailov, GA Dushenko, A Zschunke, Russ Chem Rev 2003, 72, 867.

[27]  Deacon GB, Cosgriff JE, Lawrenz ET, Forsyth CM, Wilkinson DL. Section 2.3: Organolanthanide(II) Complexes, In Herrmann WA, editor. Herrmann-Brauer, Synthetic Methods of Organometallic and Inorganic Chemistry. Stuttgart: Thieme; 1997, vol. 6, p. 48.

[28]  CrysAlisPRO v.39. Yarnton, Oxfordshire, England: Agilent Technologies Ltd.

[29]  GM Sheldrick, Acta Crystallogr Sect C Struct Chem 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  LJ Barbour, J Supramol Chem 2001, 1, 189.
         | Crossref | GoogleScholarGoogle Scholar |