Copper mediated in situ nucleophilic addition of polyalcohols to dicyanonitrosomethanide†
Mohd. R. Razali A B , Aron Urbatsch A , Boujemaa Moubaraki A , Keith S. Murray A , Glen B. Deacon A and Stuart R. Batten A *A School of Chemistry, 19 Rainforest Walk, Monash University, Vic. 3800, Australia.
B School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia.
Australian Journal of Chemistry 75(9) 725-731 https://doi.org/10.1071/CH21323
Submitted: 6 December 2021 Accepted: 7 February 2022 Published: 22 March 2022
© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)
Abstract
The transition metal-promoted in situ nucleophilic addition of triethanolamine (teaH3) and N-methyldiethanolamine (mdeaH2) to the dicyanonitrosomethanide (dcnm) anion results in the formation of [Cu(hbnm)]·MeOH (1) and [Cu(mbnm)]·2MeCN (2), (hbnm = hydroxyethylaminobis(ethoxy(imino)methyl(cyano)nitrosomethanide) and mbnm = methylaminobis(ethoxy(imino)methyl(cyano)nitrosomethanide). Complexes 1 and 2 are coordination polymers, each containing the addition products of two alcohol arms of teaH3 and mdeaH2 to dcnm anions.
Keywords: coordination polymer, copper, crystal structure, dicyanonitrosomethanide, in situ reactions, magnetic properties, nucleophilic addition, small cyano anions.
References
[1] DR Turner, ASR Chesman, KS Murray, GB Deacon, SR Batten, Chem Commun 2011, 47, 10189.| Crossref | GoogleScholarGoogle Scholar |
[2] N Gerasimchuk, Dalton Trans 2019, 48, 7985.
| Crossref | GoogleScholarGoogle Scholar | 31090771PubMed |
[3] S Benmansour, C Atmani, F Setifi, S Triki, M Marchivie, CJ Gómez-García, Coord Chem Rev 2010, 254, 1468.
| Crossref | GoogleScholarGoogle Scholar |
[4] SR Batten, KS Murray, Coord Chem Rev 2003, 246, 103.
| Crossref | GoogleScholarGoogle Scholar |
[5] M Hvastijová, J Kohout, JW Buchler, R Boča, J Kožı’šek, L Jäger, Coord Chem Rev 1998, 175, 17.
| Crossref | GoogleScholarGoogle Scholar |
[6] ASR Chesman, DR Turner, B Moubaraki, KS Murray, GB Deacon, SR Batten, Dalton Trans 2012, 41, 3751.
| Crossref | GoogleScholarGoogle Scholar |
[7] MR Razali, NF Chilton, A Urbatsch, B Moubaraki, SK Langley, KS Murray, GB Deacon, SR Batten, Polyhedron 2013, 52, 797.
| Crossref | GoogleScholarGoogle Scholar |
[8] DJ Price, SR Batten, KJ Berry, B Moubaraki, KS Murray, Polyhedron 2003, 22, 165.
| Crossref | GoogleScholarGoogle Scholar |
[9] ASR Chesman, DR Turner, B Moubaraki, KS Murray, GB Deacon, SR Batten, Inorg Chim Acta 2012, 389, 99.
| Crossref | GoogleScholarGoogle Scholar |
[10] MR Razali, A Urbatsch, SK Langley, JG MacLellan, GB Deacon, B Moubaraki, KS Murray, SR Batten, Aust J Chem 2012, 65, 918.
| Crossref | GoogleScholarGoogle Scholar |
[11] ASR Chesman, DR Turner, KJ Berry, NF Chilton, B Moubaraki, KS Murray, GB Deacon, SR Batten, Dalton Trans 2012, 41, 11402.
| Crossref | GoogleScholarGoogle Scholar |
[12] ASR Chesman, DR Turner, B Moubaraki, KS Murray, GB Deacon, SR Batten, Eur J Inorg Chem 2010, 2010, 59.
| Crossref | GoogleScholarGoogle Scholar |
[13] EI Izgorodina, ASR Chesman, DR Turner, GB Deacon, SR Batten, J Phys Chem B 2010, 114, 16517.
| Crossref | GoogleScholarGoogle Scholar | 21086972PubMed |
[14] ASR Chesman, DR Turner, DJ Price, B Moubaraki, KS Murray, GB Deacon, SR Batten, Chem Commun 2007, 3541.
| Crossref | GoogleScholarGoogle Scholar |
[15] ASR Chesman, DR Turner, GB Deacon, SR Batten, Chem Asian J 2009, 4, 761.
| Crossref | GoogleScholarGoogle Scholar |
[16] MR Razali, A Urbatsch, GB Deacon, SR Batten, Inorg Chim Acta 2013, 403, 120.
| Crossref | GoogleScholarGoogle Scholar |
[17] SK Langley, NF Chilton, B Moubaraki, KS Murray, Dalton Trans 2012, 41, 1033.
| Crossref | GoogleScholarGoogle Scholar | 22113523PubMed |
[18] SK Langley, L Ungur, NF Chilton, B Moubaraki, LF Chibotaru, KS Murray, Chem Eur J 2011, 17, 9209.
| Crossref | GoogleScholarGoogle Scholar | 21732432PubMed |
[19] S-J Liu, S-D Han, J-M Jia, L Xue, Y Cui, S-M Zhang, Z Chang, CrystEngComm 2014, 16, 5212.
| Crossref | GoogleScholarGoogle Scholar |
[20] MR Razali, ASR Chesman, NF Chilton, SK Langley, B Moubaraki, KS Murray, GB Deacon, SR Batten, Dalton Trans 2013, 42, 1400.
| Crossref | GoogleScholarGoogle Scholar | 23160602PubMed |
[21] ASR Chesman, DR Turner, B Moubaraki, KS Murray, GB Deacon, SR Batten, Aust J Chem 2009, 62, 1137.
| Crossref | GoogleScholarGoogle Scholar |
[22] AA Opalade, CJ Gomez-Garcia, N Gerasimchuk, Cryst Growth Des 2019, 19, 678.
| Crossref | GoogleScholarGoogle Scholar |
[23] AA Opalade, A Karmakar, GMDM Rúbio, AJL Pombeiro, N Gerasimchuk, Inorg Chem 2017, 56, 13962.
| Crossref | GoogleScholarGoogle Scholar | 29120177PubMed |
[24] LM Wittick, KS Murray, B Moubaraki, SR Batten, L Spiccia, KJ Berry, Dalton Trans 2004, 1003.
| Crossref | GoogleScholarGoogle Scholar | 15252679PubMed |
[25] S Schmidt, D Prodius, V Mereacre, GE Kostakis, AK Powell, Chem Commun 2013, 49, 1696.
| Crossref | GoogleScholarGoogle Scholar |
[26] B Bleaney, KD Bowers, Proc R Soc London, Sect A 1952, 214, 451.
| Crossref | GoogleScholarGoogle Scholar |
[27] G Longo, Gazz, Chim Ital 1931, 61, 575.
[28] NP Cowieson, D Aragao, M Clift, DJ Ericsson, C Gee, SJ Harrop, N Mudie, S Panjikar, JR Price, A Riboldi-Tunnicliffe, R Williamson, T Caradoc-Davies, J Synchrotron Rad 2015, 22, 187.
| Crossref | GoogleScholarGoogle Scholar |
[29] TM McPhillips, SE McPhillips, HJ Chiu, AE Cohen, AM Deacon, PJ Ellis, E Garman, A Gonzalez, NK Sauter, RP Phizackerley, SM Soltis, P Kuhn, J Synchrotron Rad 2002, 9, 401.
| Crossref | GoogleScholarGoogle Scholar |
[30] W Kabsch, J Appl Crystallogr 1993, 26, 795.
| Crossref | GoogleScholarGoogle Scholar |
[31] APEXII, v2.1.0. Madison, Wisconsin: Bruker AXS Ltd; 2005.
[32] GM Sheldrick, Acta Crystallogr, Sect A 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar | 18156677PubMed |
[33] OV Dolomanov, LJ Bourhis, RJ Gildea, JAK Howard, H Puschmann, J Appl Cryst 2009, 42, 339.
| Crossref | GoogleScholarGoogle Scholar |