New boron-based coumarin fluorophores for bioimaging applications†
Anita Marfavi A B , Jia Hao Yeo A , Kathryn G. Leslie A , Elizabeth J. New A B C and Louis M. Rendina A B *A School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
B The University of Sydney Nano Institute, Sydney, NSW 2006, Australia.
C Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia.
Australian Journal of Chemistry 75(9) 716-724 https://doi.org/10.1071/CH21320
Submitted: 3 December 2021 Accepted: 7 February 2022 Published: 29 March 2022
© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)
Abstract
The synthesis and characterisation of five new boron-based coumarin fluorophores are reported, with key structural variations involving the linker at the C3-position (hydrazone or imine) of the 7-(diethylamino)-coumarin (7DEAC) core and the terminal boron moiety (i.e. boronic acid or closo-1,2-carborane). All the coumarin derivatives were found to display significant bathochromic shifts relative to the parent 7DEAC, with conjugate ICCb displaying the greatest overall shift. Confocal microscopy studies with A549 lung cancer cells showed clear differences in the observed intra-cellular distributions of the fluorophores. The polar boronic acid species (HCoBA, HCmBA and HCpBA) were found to localise in the endoplasmic reticulum. In contrast, the lipophilic closo-1,2-carborane derivatives (HCCb and ICCb) were found to localise within lipid droplets (LDs), showcasing the future potential for these probes to be utilised as stains for LD observations by means of confocal microscopy.
Keywords: bioimaging, boron, coumarin, endoplasmic reticulum, fluorescence microscopy, fluorescent probes, fluorophore, intramolecular charge transfer, lipid droplets, near‐infrared, Nile Red.
References
[1] J Jonkman, CM Brown, J Biomol Tech 2015, 26, 54.| Crossref | GoogleScholarGoogle Scholar | 25802490PubMed |
[2] AL Vahrmeijer, M Hutteman, JR van der Vorst, CJH van de Velde, J V Frangioni, Nat Rev Clin Oncol 2013, 10, 507.
| Crossref | GoogleScholarGoogle Scholar | 23881033PubMed |
[3] SL Gibbs, Quant Imaging Med Surg 2012, 2, 177.
| 23256079PubMed |
[4] L Boni, G David, A Mangano, G Dionigi, S Rausei, S Spampatti, Surg Endosc 2015, 29, 2046.
| Crossref | GoogleScholarGoogle Scholar | 25303914PubMed |
[5] J Qin, Z Yang, Anal Methods 2015, 7, 2036.
| Crossref | GoogleScholarGoogle Scholar |
[6] S He, J Song, J Qu, Z Cheng, Chem Soc Rev 2018, 47, 4258.
| Crossref | GoogleScholarGoogle Scholar | 29725670PubMed |
[7] G Niu, W Liu, H Xiao, H Zhang, J Chen, Q Dai, Chem Asian J 2016, 11, 498.
| Crossref | GoogleScholarGoogle Scholar | 26558738PubMed |
[8] J Chen, W Liu, B Zhou, G Niu, H Zhang, J Wu, J Org Chem 2013, 78, 6121.
| Crossref | GoogleScholarGoogle Scholar | 23705772PubMed |
[9] X Liu, JM Cole, PG Waddell, TC Lin, J Radia, A Zeidler, J Phys Chem A 2012, 116, 727.
| Crossref | GoogleScholarGoogle Scholar | 22117623PubMed |
[10] M Musa, J Cooperwood, MO Khan, Curr Med Chem 2008, 15, 2664.
| Crossref | GoogleScholarGoogle Scholar | 18991629PubMed |
[11] Y Nagasawa, AP Yartsev, K Tominaga, AE Johnson, K Yoshihara, J Am Chem Soc 1993, 115, 7922.
| Crossref | GoogleScholarGoogle Scholar |
[12] N DiCesare, JR Lakowicz, J Biomed Opt 2002, 7, 538.
| Crossref | GoogleScholarGoogle Scholar | 12421119PubMed |
[13] A Wu, JL Kolanowski, BB Boumelhem, K Yang, R Lee, A Kaur, Chem Asian J 2017, 12, 1704.
| Crossref | GoogleScholarGoogle Scholar | 28640518PubMed |
[14] Z Guo, I Shin, J Yoon, ChemComm 2012, 48, 5956.
| Crossref | GoogleScholarGoogle Scholar |
[15] F Issa, M Kassiou, LM Rendina, Chem Rev 2011, 111, 5701.
| Crossref | GoogleScholarGoogle Scholar | 21718011PubMed |
[16] J Kahlert, CJD Austin, M Kassiou, LM Rendina, Aust J Chem 2013, 66, 1118.
| Crossref | GoogleScholarGoogle Scholar |
[17] J Kahlert, L Böhling, A Brockhinke, H-G Stammler, B Neumann, LM Rendina, Dalton Trans 2015, 44, 9766.
| Crossref | GoogleScholarGoogle Scholar | 25939355PubMed |
[18] Y Ma, W Luo, PJ Quinn, Z Liu, RC Hider, J Med Chem 2004, 47, 6349.
| Crossref | GoogleScholarGoogle Scholar | 15566304PubMed |
[19] H Takechi, Y Oda, N Nishizono, K Oda, M Machida, Chem Pharm Bull 2000, 48, 1702.
| Crossref | GoogleScholarGoogle Scholar |
[20] R Chowdhury, B Jana, A Saha, S Ghosh, K Bhattacharyya, Medchemcomm 2014, 5, 536.
| Crossref | GoogleScholarGoogle Scholar |
[21] BB Boumelhem, C Pilgrim, VE Zwicker, JL Kolanowski, JH Yeo, KA Jolliffe, J Cell Sci 2022, 135, jcs258322.
| Crossref | GoogleScholarGoogle Scholar | 34114626PubMed |
[22] ALS Cruz, E Barreto, A de, NPB Fazolini, JPB Viola, PT Bozza, Cell Death Dis 2020, 11, 105.
| Crossref | GoogleScholarGoogle Scholar | 32029741PubMed |
[23] A Li, N-J Song, BP Riesenberg, Z Li, Front Immunol 2020, 10, 1.
| Crossref | GoogleScholarGoogle Scholar |
[24] P Dozzo, RA Kasar, SB Kahl, Inorg Chem 2005, 44, 8053.
| Crossref | GoogleScholarGoogle Scholar | 16241155PubMed |
[25] J-S Wu, W-M Liu, X-Q Zhuang, F Wang, P-F Wang, S-L Tao, Org Lett 2007, 9, 33.
| Crossref | GoogleScholarGoogle Scholar | 17192078PubMed |
[26] Z Zhou, N Li, A Tong, Anal Chim Acta 2011, 702, 81.
| Crossref | GoogleScholarGoogle Scholar | 21819863PubMed |
[27] Y Nie, Y Wang, J Miao, Y Li, Z Zhang, J Organomet Chem 2015, 798, 182.
| Crossref | GoogleScholarGoogle Scholar |
[28] MA Antoniades, G V Eleftheriades, Proc 5th Eur Conf Antennas Propagation, EUCAP 2011 2011, 73, 2406.
[29] S Bolte, FP Cordelières, J Microsc 2006, 224, 213.
| Crossref | GoogleScholarGoogle Scholar | 17210054PubMed |
[30] JS Aaron, AB Taylor, T-L Chew, J Cell Sci 2018, 131, jcs211847.
| Crossref | GoogleScholarGoogle Scholar | 29439158PubMed |