Reduction of phosphine sulfides and selenides by samarium(ii) formamidinate as an approach to binuclear mono- and dichalcogenide complexes†
Boris Yu. Savkov A , Taisiya S. Sukhikh A , Sergey N. Konchenko A * and Nikolay A. Pushkarevsky A *A Nikolaev Institute of Inorganic Chemistry SB RAS, Akademika Lavrentieva Avenue 3, 630090 Novosibirsk, Russia.
Australian Journal of Chemistry 75(9) 732-745 https://doi.org/10.1071/CH21271
Submitted: 19 October 2021 Accepted: 17 February 2022 Published: 16 August 2022
© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.
Abstract
The reductive action of the bulky SmII formamidinate complex [Sm(dippForm)2(thf)2] (dippForm− = HC(Ndipp)2−, dipp = 2,6-diisopropylphenyl; thf = tetrahydrofuran) (1) on a series of phosphine chalcogenides (R3PE = Ph3PO, Ph3PS, Ph3PSe, nBu3PS, nBu3PSe) as well as Ph3AsS, has been investigated. The reactions are fast for the phosphine derivatives with E = Se and for Ph3AsS, and slow for the phosphine sulfides. They lead to mixtures of binuclear mono- and dichalcogenide complexes [(Sm(dippForm)2)2(µ-En)] (E = S (2), Se (3); n = 1, 2). The ratio of species with (µ-E) or (µ-η2:η2-E2) bridges depends on the nature of the chalcogenide reactant and its concentration, but even under its local excess the formation of the monochalcogenide is preferential. Both types of species form isostructural solid solutions. The dense outer packing of dippForm ligands in the complexes 2 and 3, leaving enough free space in the centre of the molecule, is thought to be the main reason for the geometrical similarity of mono- and dichalcogenides and for their ready co-crystallization. A reaction scheme is proposed, involving the coordination of the starting chalcogenide to the SmII centre with successive formation of E-centered transient radical species [Sm(dippForm)2(E˙)]. Contrary to the phosphine/arsine sulfides and selenides, the product of phosphine oxide coordination, [Sm(dippForm)2(OPPh3)] (4), was shown to be stable, while a similar complex with two phosphine oxide ligands, [Sm(dippForm)2(OPPh3)2] (5), was fortuitously crystallized at lower temperatures.
Keywords: arsine sulphide, chalcogenide, formamidinate, lanthanide, molecular structure, radical intermediate, reaction pathway, reductive reactivity.
References
[1] (a) DJ Berg, CJ Burns, RA Andersen, A Zalkin, Organometallics 1989, 8, 1865.| Crossref | GoogleScholarGoogle Scholar |
(b) WJ Evans, GW Rabe, JW Ziller, RJ Doedens, Inorg Chem 1994, 33, 2719.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) C Schoo, SV Klementyeva, MT Gamer, SN Konchenko, PW Roesky, Chem Comm 2016, 52, 6654.
| Crossref | GoogleScholarGoogle Scholar |
(b) E Louyriac, PW Roesky, L Maron, Dalton Trans 2017, 46, 7660.
| Crossref | GoogleScholarGoogle Scholar |
[3] AG Demkin, BY Savkov, TS Sukhikh, SN Konchenko, J Struct Chem 2021, 62, 957.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) OP Lam, SM Franke, FW Heinemann, K Meyer, J Am Chem Soc 2012, 134, 16877.
| Crossref | GoogleScholarGoogle Scholar |
(b) A-C Schmidt, AV Nizovtsev, A Scheurer, FW Heinemann, K Meyer, Chem Comm 2012, 48, 8634.
| Crossref | GoogleScholarGoogle Scholar |
[5] CAP Goodwin, BLL Réant, GF Vettese, JGC Kragskow, MJ Giansiracusa, IM DiMucci, KM Lancaster, DP Mills, S Sproules, Inorg Chem 2020, 59, 7571.
| Crossref | GoogleScholarGoogle Scholar |
[6] CR Groom, IJ Bruno, MP Lightfoot, SC Ward, Acta Crystallogr B 2016, 72, 171. CSD version 5.42, November 2020
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) M Fitzgerald, TJ Emge, JG Brennan, Inorg Chem 2002, 41, 3528.
| Crossref | GoogleScholarGoogle Scholar |
(b) AA Fagin, OV Kuznetsova, RV Rumyantcev, GK Fukin, AV Marugin, MN Bochkarev, J Clust Sci 2019, 30, 1277.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) A Zalkin, DJ Berg, Acta Crystallogr C 1988, 44, 1488.
(b) ME Fieser, CW Johnson, JE Bates, JW Ziller, F Furche, WJ Evans, Organometallics 2015, 34, 4387.
| Crossref | GoogleScholarGoogle Scholar |
[9] J Li, J Hao, C Cui, Dalton Trans 2015, 44, 767.
| Crossref | GoogleScholarGoogle Scholar |
[10] D Turcitu, F Nief, L Ricard, Chemistry 2003, 9, 4916.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) L Maria, M Soares, IC Santos, VR Sousa, E Mora, J Marçalo, KV Luzyanin, Dalton Trans 2016, 45, 3778.
| Crossref | GoogleScholarGoogle Scholar |
(b) J-F Chen, Q-Y Jin, Y-L Pan, Y Zhang, D-X Jia, Chem Comm 2009, 7212.
(c) J Liang, J Chen, J Zhao, Y Pan, Y Zhang, D Jia, Dalton Trans 2011, 40, 2631.
| Crossref | GoogleScholarGoogle Scholar |
[12] GB Deacon, ME Hossain, PC Junk, M Salehisaki, Coord Chem Rev 2017, 340, 247.
| Crossref | GoogleScholarGoogle Scholar |
[13] Z Zhang, L Zhang, Y Li, L Hong, Z Chen, X Zhou, Inorg Chem 2010, 49, 5715.
| Crossref | GoogleScholarGoogle Scholar |
[14] D Werner, GB Deacon, PC Junk, Inorg Chem 2019, 58, 1912.
| Crossref | GoogleScholarGoogle Scholar |
[15] D Werner, X Zhao, SP Best, L Maron, PC Junk, GB Deacon, Chem Eur J 2017, 23, 2084.
| Crossref | GoogleScholarGoogle Scholar |
[16] Y-Z Ma, S Bestgen, MT Gamer, SN Konchenko, PW Roesky, Angew Chem Int Ed 2017, 56, 13249.
| Crossref | GoogleScholarGoogle Scholar |
[17] Y-Z Ma, N Pushkarevsky, TS Sukhikh, AE Galashov, AG Makarov, PW Roesky, SN Konchenko, Eur J Inorg Chem 2018, 29, 3388.
| Crossref | GoogleScholarGoogle Scholar |
[18] C Schoo, S Bestgen, R Köppe, SN Konchenko, PW Roesky, Chem Comm 2018, 54, 4770.
| Crossref | GoogleScholarGoogle Scholar |
[19] D Gu, C Yi, W Ren, Inorg Chem 2019, 58, 9260.
| Crossref | GoogleScholarGoogle Scholar |
[20] JF Corbey, M Fang, JW Ziller, WJ Evans, Inorg Chem 2015, 54, 801.
| Crossref | GoogleScholarGoogle Scholar |
[21] (a) WJ Evans, GW Nyce, RD Clark, RJ Doedens, JW Ziller, Angew Chem Int Ed 1999, 38, 1801.
| Crossref | GoogleScholarGoogle Scholar |
(b) WJ Evans, BL Davis, TM Champagne, JW Ziller, Proc Natl Acad Sci USA 2006, 103, 12678.
| Crossref | GoogleScholarGoogle Scholar |
[22] KB Capps, B Wixmerten, A Bauer, CD Hoff, Inorg Chem 1998, 37, 2861.
| Crossref | GoogleScholarGoogle Scholar |
[23] RD Baechler, M Stack, K Stevenson, V Vanvalkenburgh, Phosphorus Sulfur Silicon Relat Elem 1990, 48, 49.
| Crossref | GoogleScholarGoogle Scholar |
[24] WJ Transue, M Nava, MW Terban, J Yang, MW Greenberg, G Wu, ES Foreman, CL Mustoe, P Kennepohl, JS Owen, SJL Billinge, HJ Kulik, CC Cummins, J Am Chem Soc 2019, 141, 431.
| Crossref | GoogleScholarGoogle Scholar |
[25] (a) RD Bannister, W Levason, ME Light, G Reid, Polyhedron 2018, 154, 259.
(b) WJ Evans, JW Grate, I Bloom, WE Hunter, JL Atwood, J Am Chem Soc 1985, 107, 405.
| Crossref | GoogleScholarGoogle Scholar |
[26] AY Konokhova, MY Afonin, TS Sukhikh, SN Konchenko, J Struct Chem 2020, 61, 1244.
| Crossref | GoogleScholarGoogle Scholar |
[27] CSD version 5.42, November 2020 [6]. There are 10 structures of this type with the refcodes NONGIJ, NONJOS, PALHEQ, GEGBEC, GOKLIB, GOKLOH, NONGOP, NONGUV, GEXWEL, LEXVAL.
[28] CSD version 5.42, November 2020 [6]. There are 8 monochalcogenide structures of this type with the refcodes LEXTIR, LUSFIQ, LUSFOW, MEXSUG, GEFZOJ, KARBOU, LEXTEN, LEXTAJ.
[29] DF Evans, J Chem Soc 1959, 2003.
| Crossref | GoogleScholarGoogle Scholar |
[30] WJ Evans, MA Hozbor, J Organomet Chem 1987, 326, 299.
| Crossref | GoogleScholarGoogle Scholar |
[31] GB Deacon, PC Junk, D Werner, Chem Eur J 2016, 22, 160.
| Crossref | GoogleScholarGoogle Scholar |
[32] GB Deacon, JHS Green, Spectrochim Acta A 1968, 24, 845.
| Crossref | GoogleScholarGoogle Scholar |
[33] WJ Evans, M Fang, JE Bates, F Furche, JW Ziller, MD Kiesz, JI Zink, Nature Chemistry 2010, 2, 644.
| Crossref | GoogleScholarGoogle Scholar |
[34] GB Deacon, CM Forsyth, D Freckmann, PC Junk, K Konstas, J Luu, G Meyer, D Werner, Aust J Chem 2014, 67, 1860.
| Crossref | GoogleScholarGoogle Scholar |
[35] C Schoo, S Bestgen, M Schmidt, SN Konchenko, M Scheer, PW Roesky, Chem Comm 2016, 52, 13217.
| Crossref | GoogleScholarGoogle Scholar |
[36] RK Haynes, C Indorato, Aust J Chem 1984, 37, 1183.
| Crossref | GoogleScholarGoogle Scholar |
[37] Bruker Apex3 software suite: Apex3, SADABS-2016/2 and SAINT, ver. 2018.7-2. Madison, WI: Bruker AXS Inc.; 2017.
[38] G Sheldrick, Acta Crystallogr A 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar |
[39] G Sheldrick, Acta Crystallogr C 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar |
[40] OV Dolomanov, LJ Bourhis, RJ Gildea, JAK Howard, H Puschmann, J Appl Crystallogr 2009, 42, 339.
| Crossref | GoogleScholarGoogle Scholar |