Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Structural Investigation into Magnesium Based MOFs Derived from Aliphatic Linkers

A. David Dharma https://orcid.org/0000-0002-3784-3795 A B , Celia Chen A B and Lauren K. Macreadie https://orcid.org/0000-0001-7672-9795 A C
+ Author Affiliations
- Author Affiliations

A School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.

B These authors contributed equally to this work and are joint first authors.

C Corresponding author. Email: lauren.macreadie@sydney.edu.au




Lauren K. Macreadie received her BBiomedSc/BSc(Hons) in 2011 from Monash University and then completed her PhD at the CSIRO and Monash University in 2016. Following her PhD, she worked at Trinity College Dublin in Ireland on water splitting MOF systems, and then in 2017 she moved to the CSIRO in Melbourne as a research scientist working on MOFs as adsorbents for respiratory canisters with the Defence Science and Technology Group. Lauren then transitioned to post-doctoral research at the CSIRO, followed by a move to Massey University in New Zealand as a chemistry lecturer in mid-2019. In mid-2020, Lauren moved to the University of Sydney as a post-doctoral researcher and soon after was awarded an Australian Research Council DECRA Fellowship where she investigates functional MOF materials.

Australian Journal of Chemistry 75(2) 155-159 https://doi.org/10.1071/CH21208
Submitted: 19 August 2021  Accepted: 30 November 2021   Published: 17 January 2022

Abstract

Lightweight metal–organic frameworks (MOFs) with large volume storage capabilities are highly sought after as solid adsorbents in gas storage applications. This is particularly important for hydrogen gas adsorbents and can be explored through constructing MOFs from magnesium, which is a light metal and can readily form lightweight frameworks. Recently, the use of bulky, 3D aliphatic linkers in MOF synthesis has resulted in materials with higher gas adsorption enthalpies at lower pressures. Here, we employ both aliphatic linkers and magnesium clusters to produce lightweight, aliphatic frameworks with potential use for gas adsorption applications. Two magnesium MOFs were synthesised, 3DL-MOF-2 and 3DL-MOF-3 (3DL = 3DLinker), and structurally investigated using single crystal X-ray diffraction. While these MOFs do not have any accessible void spaces and therefore cannot be used for gas adsorption, they create a platform for future magnesium aliphatic MOF research to form open frameworks.

Keywords: metal–organic framework, crystallography, materials characterisation, cubane-1,4-dicarboxylic acid, porous coordination polymer, single crystal X-ray diffraction, magnesium MOF, hydrogen storage.


References

[1]  B. F. Hoskins, R. Robson, J. Am. Chem. Soc. 1989, 111, 5962.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  O. M. Yaghi, M. J. Kalmutzki, C. S. Diercks, in Introduction to Reticular Chemistry 2019, p. 59 (Wiley-VCH: Weinheim).

[3]  V. D. Slyusarchuk, P. E. Kruger, C. S. Hawes, ChemPlusChem 2020, 85, 845.
         | Crossref | GoogleScholarGoogle Scholar | 32378813PubMed |

[4]  L. K. Macreadie, E. J. Mensforth, R. Babarao, K. Konstas, S. G. Telfer, C. M. Doherty, J. Tsanaktsidis, S. R. Batten, M. R. Hill, J. Am. Chem. Soc. 2019, 141, 3828.
         | Crossref | GoogleScholarGoogle Scholar | 30776225PubMed |

[5]  L. K. Macreadie, R. Babarao, C. J. Setter, S. J. Lee, O. T. Qazvini, A. J. Seeber, J. Tsanaktsidis, S. G. Telfer, S. R. Batten, M. R. Hill, Angew. Chem. Int. Ed. 2020, 59, 6090.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  L. K. Macreadie, O. T. Qazvini, R. Babarao, ACS Appl. Mater. Interfaces 2021, 13, 30885.
         | Crossref | GoogleScholarGoogle Scholar | 34165976PubMed |

[7]  J. Perego, S. Bracco, M. Negroni, C. X. Bezuidenhout, G. Prando, P. Carretta, A. Comotti, P. Sozzani, Nat. Chem. 2020, 12, 845.
         | Crossref | GoogleScholarGoogle Scholar | 32632187PubMed |

[8]  S. Mukherjee, D. Sensharma, O. T. Qazvini, S. Dutta, L. K. Macreadie, S. K. Ghosh, R. Babarao, Coord. Chem. Rev. 2021, 437, 213852.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  P. D. C. Dietzel, R. Blom, H. Fjellvåg, Eur. J. Inorg. Chem. 2008, 3624.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  E. Papazoi, A. Douvali, S. Rapti, E. Skliri, G. S. Armatas, G. S. Papaefstathiou, X. Wang, Z.-F. Huang, S. Kaziannis, C. Kosmidis, A. G. Hatzidimitriou, T. Lazarides, M. J. Manos, Inorg. Chem. Front. 2017, 4, 530.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  D. Banerjee, J. B. Parise, Cryst. Growth Des. 2011, 11, 4704.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  Y. Zang, L.-K. Li, S.-Q. Zang, Coord. Chem. Rev. 2021, 440, 213955.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  R. P. Davies, R. J. Less, P. D. Lickiss, A. J. White, Dalton Trans. 2007, 2528.
         | Crossref | GoogleScholarGoogle Scholar | 17563788PubMed |

[14]  C. A. Williams, A. J. Blake, C. Wilson, P. Hubberstey, M. Schröder, Cryst. Growth Des. 2008, 8, 911.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  A. Biswas, M.-B. Kim, S.-Y. Kim, T.-U. Yoon, S.-I. Kim, Y.-S. Bae, RSC Adv. 2016, 6, 81485.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  M. Dinca, J. R. Long, J. Am. Chem. Soc. 2005, 127, 9376.
         | Crossref | GoogleScholarGoogle Scholar | 15984858PubMed |

[17]  A. Marakulin, A. Lysova, D. Samsonenko, P. Dorovatovskii, V. Lazarenko, D. Dybtsev, V. Fedin, Russ. Chem. Bull. 2020, 69, 360.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  W. L. Queen, C. M. Brown, D. K. Britt, P. Zajdel, M. R. Hudson, O. M. Yaghi, J. Phys. Chem. C 2011, 115, 24915.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  L. Valenzano, B. Civalleri, S. Chavan, G. T. Palomino, C. O. Areán, S. Bordiga, J. Phys. Chem. C 2010, 114, 11185.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  T. M. McDonald, W. R. Lee, J. A. Mason, B. M. Wiers, C. S. Hong, J. R. Long, J. Am. Chem. Soc. 2012, 134, 7056.
         | Crossref | GoogleScholarGoogle Scholar | 22475173PubMed |

[21]  A. Mallick, S. Saha, P. Pachfule, S. Roy, R. Banerjee, J. Mater. Chem. 2010, 20, 9073.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  P. J. Calderone, D. Banerjee, A. C. Santulli, S. S. Wong, J. B. Parise, Inorg. Chim. Acta 2011, 378, 109.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  Q.-G. Zhai, X. Bu, X. Zhao, C. Mao, F. Bu, X. Chen, P. Feng, Cryst. Growth Des. 2016, 16, 1261.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  A. E. Platero‐Prats, N. Snejko, M. Iglesias, Á. Monge, E. Gutiérrez‐Puebla, Chem. – Eur. J. 2013, 19, 15572.
         | Crossref | GoogleScholarGoogle Scholar | 24123315PubMed |

[25]  Y. Tang, A. Kourtellaris, A. J. Tasiopoulos, S. J. Teat, D. Dubbeldam, G. Rothenberg, S. Tanase, Inorg. Chem. Front. 2018, 5, 541.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  A. Douvali, G. S. Papaefstathiou, M. P. Gullo, A. Barbieri, A. C. Tsipis, C. D. Malliakas, M. G. Kanatzidis, I. Papadas, G. S. Armatas, A. G. Hatzidimitriou, T. Lazarides, M. J. Manos, Inorg. Chem. 2015, 54, 5813.
         | Crossref | GoogleScholarGoogle Scholar | 26039441PubMed |

[27]  Y.-M. Xie, J.-H. Wu, Inorg. Chim. Acta 2014, 412, 15.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  B. H. Toby, R. B. Von Dreele, J. Appl. Cryst. 2013, 46, 544.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  B. H. Toby, J. Appl. Cryst. 2001, 34, 210.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  T. M. McPhillips, S. E. McPhillips, H.-J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, J. Synchrotron Radiat. 2002, 9, 401.
         | Crossref | GoogleScholarGoogle Scholar | 12409628PubMed |

[31]  W. Kabsch, J. Appl. Cryst. 1993, 26, 795.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  G. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
         | Crossref | GoogleScholarGoogle Scholar | 18156677PubMed |

[33]  G. Sheldrick, Acta Crystallogr. C 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
         | Crossref | GoogleScholarGoogle Scholar |