Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW (Open Access)

Emerging Ionic Polymers for CO2 Conversion to Cyclic Carbonates: An Overview of Recent Developments*

Rabia Jamil A , Liliana C. Tomé B , David Mecerreyes C D and Debbie S. Silvester https://orcid.org/0000-0002-7678-7482 A E
+ Author Affiliations
- Author Affiliations

A School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.

B LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.

C POLYMAT University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastian, Spain.

D IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.

E Corresponding author. Email: d.silvester-dean@curtin.edu.au




Rabia Jamil completed her M.Sc. at Quaid-i-Azam University, Islamabad, Pakistan. Her M.Phil. research was carried out in the same university under the supervision of Dr Muhammad Shahid Ansari, focussed on the synthesis of nanomaterials with various surface modifications for electrocatalysis and materials chemistry for renewable energy. She will soon begin her Ph.D. studies under the supervision of A/Prof. Debbie Silvester (her start has been delayed due to travel restrictions following COVID-19), focussing on the use of ionic liquids and poly(ionic liquids) for gas sensing and electrochemical applications.



Liliana C. Tomé received a M.Sc. in Materials Derived from Renewable Resources (2008) from the University of Aveiro and a Ph.D. in Engineering and Technology Sciences – Chemical Engineering (2014) from Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Portugal. After her post-doc (2015–2018) at the same institute, she moved to POLYMAT – University of the Basque Country (Spain) with a Marie Skłodowska-Curie Individual Fellowship. In 2020, she joined LAQV-REQUIMTE, NOVA School of Science and Technology | FCT NOVA (Portugal), where she is an Assistant Researcher and recently received the L’Oréal Portugal Medal of Honor for Women in Science 2020. Her areas of research are centered on iongels and poly(ionic liquid)-based materials for gas separation and bioelectronics.



David Mecerreyes is an Ikerbasque Research Professor at POLYMAT-University of the Basque Country (Spain). He received his Ph.D. from University of Liege in 1998. After a post-doc (1998–2000) at IBM Almaden Research Center (California), he moved to Spain to work at CIDETEC. In 2010, he moved to POLYMAT where he became the leader of the Innovative Polymers Group. His area of expertise is polymer synthesis of ionic and electroactive polymers, such as poly(ionic liquid)s, polymer electrolytes, redox polymers, and PEDOT type conductive polymers. His current research interests involve the application of innovative polymers in emerging technologies such as organic batteries and bioelectronic devices.



Debbie Silvester is an Associate Professor and Australian Research Council (ARC) Future Fellow at the School of Molecular and Life Sciences at Curtin University in Perth, Australia. She completed her M.Sci. in Chemistry at the University of Bristol and her Ph.D. at the University of Oxford, UK. Her research interests include electrochemistry in ionic liquids, electrochemical reaction mechanisms, gas sensing, explosives detection, electrodeposition, and formation of modified electrodes for sensing applications. She has been awarded several national and international awards for research, including the 2021 Le Fèvre medal (Australian Academy of Science) and the 2021 Analyst Emerging Investigator Lectureship (Royal Society of Chemistry).

Australian Journal of Chemistry 74(11) 767-777 https://doi.org/10.1071/CH21182
Submitted: 31 July 2021  Accepted: 24 September 2021   Published: 25 October 2021

Journal Compilation © CSIRO 2021 Open Access CC BY

Abstract

In this mini review, we highlight some key work from the last 2 years where ionic polymers have been used as a catalyst to convert CO2 into cyclic carbonates. Emerging ionic polymers reported for this catalytic application include materials such as poly(ionic liquid)s (PILs), ionic porous organic polymers (iPOPs) or ionic covalent organic frameworks (iCOFs) among others. All these organic materials share in common the ionic moiety cations such as imidazolium, pyridinium, viologen, ammonium, phosphonium, and guanidinium, and anions such as halides, [BF4], [PF6], and [Tf2N]. The mechanistic aspects and efficiency of the CO2 conversion reaction and the polymer design including functional groups and porosity are discussed in detail. This review should provide valuable information for researchers to design new polymers for important catalysis applications.

Keywords: ionic liquids, polymers, CO2 fixation, cycloaddition reaction, heterogeneous catalysis, poly(ionic liquids), CO2 conversion, catalysts.


References

[1]  L. Al-Ghussain, Environ. Prog. Sustain. Energy 2019, 38, 13.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  M. Li, J. Wang, P. Li, K. Chang, C. Li, T. Wang, B. Jiang, H. Zhang, H. Liu, Y. Yamauchi, N. Umezawa, J. Ye, J. Mater. Chem. A Mater. Energy Sustain. 2016, 4, 4776.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  Z.-L. Wang, J. Choi, M. Xu, X. Hao, H. Zhang, Z. Jiang, M. Zuo, J. Kim, W. Zhou, X. Meng, Q. Yu, Z. Sun, S. Wei, J. Ye, G. G. Wallace, D. L. Officer, Y. Yamauchi, ChemSusChem 2020, 13, 929.
         | Crossref | GoogleScholarGoogle Scholar | 31880398PubMed |

[4]  M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Boston, S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hackett, J. P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Krevor, G. C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Petit, G. Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scott, N. Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox, N. Mac Dowell, Energy Environ. Sci. 2018, 11, 1062.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  I. Ghiat, T. Al-Ansari, J. CO Util. 2021, 45, 101432.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  I. S. Omodolor, H. O. Otor, J. A. Andonegui, B. J. Allen, A. C. Alba-Rubio, Ind. Eng. Chem. Res. 2020, 59, 17612.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  P. Markewitz, W. Kuckshinrichs, W. Leitner, J. Linssen, P. Zapp, R. Bongartz, A. Schreiber, T. E. Müller, Energy Environ. Sci. 2012, 5, 7281.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  J. Choi, J. Kim, P. Wagner, J. Na, G. G. Wallace, D. L. Officer, Y. Yamauchi, J. Mater. Chem. A Mater. Energy Sustain. 2020, 8, 14966.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  C. Yang, Y. Chen, Y. Qu, J. Zhang, J. Sun, Sustain. Energy Fuels 2021, 5, 1026.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  Y. Zhao, L. Zheng, D. Jiang, W. Xia, X. Xu, Y. Yamauchi, J. Ge, J. Tang, Small 2021, 17, 2006590.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  B. Grignard, S. Gennen, C. Jérôme, A. W. Kleij, C. Detrembleur, Chem. Soc. Rev. 2019, 48, 4466.
         | Crossref | GoogleScholarGoogle Scholar | 31276137PubMed |

[12]  C. Martín, G. Fiorani, A. W. Kleij, ACS Catal. 2015, 5, 1353.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  B.-H. Xu, J.-Q. Wang, J. Sun, Y. Huang, J.-P. Zhang, X.-P. Zhang, S.-J. Zhang, Green Chem. 2015, 17, 108.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  Z.-J. Li, J.-F. Sun, Q.-Q. Xu, J.-Z. Yin, ChemCatChem 2021, 13, 1848.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  S. Ghosh, A. Modak, A. Samanta, K. Kole, S. Jana, Mater. Adv. 2021, 2, 3161.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  P. P. Pescarmona, Curr. Opin. Green Sustain. Chem. 2021, 29, 100457.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  X. Liu, F. Zhou, M. Chen, W. Xu, H. Liu, J. Zhong, R. Luo, ChemistrySelect 2021, 6, 583.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  R. Luo, X. Liu, M. Chen, B. Liu, Y. Fang, ChemSusChem 2020, 13, 3945.
         | Crossref | GoogleScholarGoogle Scholar | 32478431PubMed |

[19]  R. Luo, W. Xu, M. Chen, X. Liu, Y. Fang, H. Ji, ChemSusChem 2020, 13, 6509.
         | Crossref | GoogleScholarGoogle Scholar | 33118279PubMed |

[20]  P. Bhanja, A. Modak, A. Bhaumik, ChemCatChem 2019, 11, 244.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  X. Zhou, J. Weber, J. Yuan, Curr. Opin. Green Sustain. Chem. 2019, 16, 39.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  Z.-W. Liu, B.-H. Han, Curr. Opin. Green Sustain. Chem. 2019, 16, 20.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  A. Rehman, F. Saleem, F. Javed, A. Ikhlaq, S. W. Ahmad, A. Harvey, J. Environ. Chem. Eng. 2021, 9, 105113.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  L. Sun, J. Luo, M. Gao, S. Tang, React. Funct. Polym. 2020, 154, 104636.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  Y. He, D. Jiang, X. Li, J. Ding, H. Li, H. Wan, G. Guan, J. CO Util. 2021, 44, 101427.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  Y. Zhang, E.-S. M. El-Sayed, K. Su, D. Yuan, Z. Han, J. CO Util. 2020, 42, 101301.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  W. Zhang, Y. Mei, P. Wu, H.-H. Wu, M.-Y. He, Catal. Sci. Technol. 2019, 9, 1030.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  C. Cui, R. Sa, Z. Hong, H. Zhong, R. Wang, ChemSusChem 2020, 13, 180.
         | Crossref | GoogleScholarGoogle Scholar | 31710182PubMed |

[29]  D. Jia, L. Ma, Y. Wang, W. Zhang, J. Li, Y. Zhou, J. Wang, Chem. Eng. J. 2020, 390, 124652.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  J. Li, Y. Han, T. Ji, N. Wu, H. Lin, J. Jiang, J. Zhu, Ind. Eng. Chem. Res. 2020, 59, 676.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  W. Zhang, F. Ma, L. Ma, Y. Zhou, J. Wang, ChemSusChem 2020, 13, 341.
         | Crossref | GoogleScholarGoogle Scholar | 31709710PubMed |

[32]  Y. Zhang, G. Chen, L. Wu, K. Liu, H. Zhong, Z. Long, M. Tong, Z. Yang, S. Dai, Chem. Commun. 2020, 3309.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  Y. Lei, Y. Wan, W. Zhong, D. Liu, Z. Yang, Polymers 2020, 12, 596.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  M. A. Ziaee, Y. Tang, H. Zhong, D. Tian, R. Wang, ACS Sustain. Chem. & Eng. 2019, 7, 2380.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  E. M. Maya, E. Verde-Sesto, D. Mantione, M. Iglesias, D. Mecerreyes, Eur. Polym. J. 2019, 110, 107.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  Y. Zhou, W. Zhang, L. Ma, Y. Zhou, J. Wang, ACS Sustain. Chem. & Eng. 2019, 7, 9387.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  H. Gou, X. Ma, Q. Su, L. Liu, T. Ying, W. Qian, L. Dong, W. Cheng, Phys. Chem. Chem. Phys. 2021, 23, 2005.
         | Crossref | GoogleScholarGoogle Scholar | 33443524PubMed |

[38]  J. Zhang, X. Li, Z. Zhu, T. Chang, X. Fu, Y. Hao, X. Meng, B. Panchal, S. Qin, Adv. Sustainable Syst. 2021, 5, 2000133.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  T. Ying, X. Tan, Q. Su, W. Cheng, L. Dong, S. Zhang, Green Chem. 2019, 21, 2352.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  T. Dong, Y.-J. Zheng, G.-W. Yang, Y.-Y. Zhang, B. Li, G.-P. Wu, ChemSusChem 2020, 13, 4121.
         | Crossref | GoogleScholarGoogle Scholar | 32662576PubMed |

[41]  Y.-R. Du, G.-R. Ding, Y.-F. Wang, B.-H. Xu, S.-J. Zhang, Green Chem. 2021, 23, 2411.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  R. Qu, Z. Ren, N. Li, F. Zhang, Z. J. Zhang, H. Zhang, J. CO Util. 2020, 38, 168.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  Y. Fu, Y. Xu, Z. Zeng, A.-R. Ibrahim, J. Yang, S. Yang, Y. Xie, Y. Hong, Y. Su, H. Wang, Y. Wang, L. Peng, J. Li, W. L. Queen, Green Energy Environ. 2021,
         | Crossref | GoogleScholarGoogle Scholar |

[44]  Y. Xie, J. Liang, Y. Fu, J. Lin, H. Wang, S. Tu, J. Li, J. CO Util. 2019, 32, 281.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  L. Qin, Y. Ji, T. Ding, B. Liu, R. Wang, L. Ji, G. Gao, Catal. Lett. 2020, 150, 1196.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  Y. Sang, J. Huang, Chem. Eng. J. 2020, 385, 123973.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  H. Song, Y. Wang, Y. Liu, L. Chen, B. Feng, X. Jin, Y. Zhou, T. Huang, M. Xiao, F. Huang, H. Gai, ACS Sustain. Chem. & Eng. 2021, 9, 2115.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  J. Cao, W. Shan, Q. Wang, X. Ling, G. Li, Y. Lyu, Y. Zhou, J. Wang, ACS Appl. Mater. Interfaces 2019, 11, 6031.
         | Crossref | GoogleScholarGoogle Scholar | 30648855PubMed |

[49]  R. Luo, M. Chen, X. Liu, W. Xu, J. Li, B. Liu, Y. Fang, J. Mater. Chem. A Mater. Energy Sustain. 2020, 8, 18408.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  Y. Zhang, K. Zhang, L. Wu, K. Liu, R. Huang, Z. Long, M. Tong, G. Chen, RSC Adv. 2020, 10, 3606.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  Y. Zhang, K. Liu, L. Wu, H. Zhong, N. Luo, Y. Zhu, M. Tong, Z. Long, G. Chen, ACS Sustain. Chem. & Eng. 2019, 7, 16907.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  J. Li, Y. Han, H. Lin, N. Wu, Q. Li, J. Jiang, J. Zhu, ACS Appl. Mater. Interfaces 2020, 12, 609.
         | Crossref | GoogleScholarGoogle Scholar | 31799826PubMed |

[53]  Y. Chen, R. Luo, Q. Ren, X. Zhou, H. Ji, Ind. Eng. Chem. Res. 2020, 59, 20269.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  W. Hui, X.-M. He, X.-Y. Xu, Y.-M. Chen, Y. Zhou, Z.-M. Li, L. Zhang, D.-J. Tao, J. CO Util. 2020, 36, 169.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  M. D. W. Hussain, V. Bhardwaj, A. Giri, A. Chande, A. Patra, Chem. Sci. 2020, 11, 7910.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  J. Qiu, Y. Zhao, Z. Li, H. Wang, Y. Shi, J. Wang, ChemSusChem 2019, 12, 2421.
         | Crossref | GoogleScholarGoogle Scholar | 30895744PubMed |

[57]  Y. Zhang, H. Hu, J. Ju, Q. Yan, V. Arumugam, X. Jing, H. Cai, Y. Gao, Chin. J. Catal. 2020, 41, 485.
         | Crossref | GoogleScholarGoogle Scholar |

[58]  H. Zhong, J. Gao, R. Sa, S. Yang, Z. Wu, R. Wang, ChemSusChem 2020, 13, 6323.
         | Crossref | GoogleScholarGoogle Scholar | 32710471PubMed |

[59]  Y. Hao, X. Yan, Z. Zhu, T. Chang, X. Meng, X. Fu, B. Panchal, L. Kang, S. Qin, Sustain. Energy Fuels 2021, 5, 2943.
         | Crossref | GoogleScholarGoogle Scholar |

[60]  D. Kim, S. Subramanian, D. Thirion, Y. Song, A. Jamal, M. S. Otaibi, C. T. Yavuz, Catal. Today 2020, 356, 527.
         | Crossref | GoogleScholarGoogle Scholar |

[61]  R.-Y. Zhang, Y. Zhang, J. Tong, L. Liu, Z.-B. Han, Catal. Lett. 2021, 151, 2833.
         | Crossref | GoogleScholarGoogle Scholar |

[62]  S. T. Kostakoğlu, Y. Chumakov, Y. Zorlu, A. E. Sadak, S. Denizaltı, A. G. Gürek, M. M. Ayhan, Mater. Adv. 2021, 2, 3685.
         | Crossref | GoogleScholarGoogle Scholar |

[63]  O. Buyukcakir, S. H. Je, S. N. Talapaneni, D. Kim, A. Coskun, ACS Appl. Mater. Interfaces 2017, 9, 7209.
         | Crossref | GoogleScholarGoogle Scholar | 28177215PubMed |

[64]  T.-T. Liu, R. Xu, J.-D. Yi, J. Liang, X.-S. Wang, P.-C. Shi, Y.-B. Huang, R. Cao, ChemCatChem 2018, 10, 2036.
         | Crossref | GoogleScholarGoogle Scholar |

[65]  Q.-J. Wu, M.-J. Mao, J.-X. Chen, Y.-B. Huang, R. Cao, Catal. Sci. Technol. 2020, 10, 8026.
         | Crossref | GoogleScholarGoogle Scholar |