Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

Computational Investigation of Adsorptive Removal of Pb2+ from Water by the UiO-66 Metal–Organic Framework: Comparison of Adsorption Sites on Defects and Functionalised Linkers

Claudia S. Cox A , Valeria Cossich Galicia B and Martina Lessio https://orcid.org/0000-0002-5143-9924 A C
+ Author Affiliations
- Author Affiliations

A School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.

B Columbia College, Columbia University, New York, NY 10027, USA.

C Corresponding author. Email: martina.lessio@unsw.edu.au




Dr Martina Lessio obtained her undergraduate degree in chemistry from the University of Torino (Italy). She was awarded a Ph.D. in chemistry in 2017 from Princeton University (USA), working under the mentorship of Professor Emily Carter on computational modelling of catalysts for CO2 conversion. After her Ph.D., Martina became a Columbia Science Fellow at Columbia University (USA), where she was a Lecturer and Research Fellow collaborating with the group of Professor David Reichman. In 2019, Martina was awarded a University of Sydney Fellowship by the University of Sydney (Australia) to investigate metal-organic frameworks for water purification applications. In 2020, Martina established her own research group in the School of Chemistry at UNSW (Australia) as a Scientia Lecturer. Her group uses computational methods to investigate molecules and materials for sustainability applications.

Australian Journal of Chemistry 75(2) 142-154 https://doi.org/10.1071/CH21139
Submitted: 10 June 2021  Accepted: 5 August 2021   Published: 3 September 2021

Journal Compilation © CSIRO 2022 Open Access CC BY

Abstract

Adsorption using metal–organic frameworks (MOFs) such as UiO-66 has shown great promise in remediating water sources contaminated with toxic heavy metals such as Pb2+, but detailed information about the adsorption process remains limited. In this article, we gained mechanistic insights into Pb2+ adsorption using both functionalised and defective UiO-66 by performing density functional theory calculations using cluster models. Our benchmarked approach led to a computational model of solvated Pb2+ (a hemidirected Pb(H2O)62+ complex) fully consistent with experimental reports. The analysis of Pb2+ adsorption using functionalised UiO-66 determined that factors such as electrostatic attraction, chelation, and limited constraints on the Pb2+ coordination geometry lead to enhanced binding affinity. For these reasons, UiO-66-COO was identified as the most promising functionalised MOF, consistent with experimental literature. We additionally explored a novel aspect of Pb2+ adsorption by UiO-66: the role of missing linker defects that often characterise this MOF. We found that the defects expected to form in an aqueous environment can act as excellent adsorption sites for Pb2+ and the preferred adsorption geometry is again determined by electrostatic attraction, chelation, and constraints on the Pb2+ coordination geometry. Overall, we conclude that functional groups and defect sites can both contribute to Pb2+ adsorption and our study provides crucial design principles for improving the UiO-66 MOF performance in toxic Pb2+ removal from water.

Keywords: lead, adsorption, water purification, UiO-66, metal–organic frameworks, computational chemistry, heavy metals, defects.


References

[1]  T. Dudev, C. Grauffel, C. Lim, Inorg. Chem. 2018, 57, 14798.
         | Crossref | GoogleScholarGoogle Scholar | 30411871PubMed |

[2]  H. Needleman, Annu. Rev. Med. 2004, 55, 209.
         | Crossref | GoogleScholarGoogle Scholar | 14746518PubMed |

[3]  M. Valcke, M. H. Bourgault, M. Gagné, P. Levallois, Sci. Total Environ. 2021, 775, 145866..

[4]  M. P. Taylor, C. Winder, B. P. Lanphear, Environ. Int. 2014, 70, 113.
         | Crossref | GoogleScholarGoogle Scholar | 24927499PubMed |

[5]  W. Wheeler, MMWR Morb. Mortal. Wkly. Rep. 2013, 62, 245.

[6]  M. Edwards, S. Triantafyllidou, D. Best, Environ. Sci. Technol. 2009, 43, 1618.
         | Crossref | GoogleScholarGoogle Scholar | 19350944PubMed |

[7]  G. Ngueta, M. Prévost, E. Deshommes, B. Abdous, D. Gauvin, P. Levallois, Environ. Int. 2014, 73, 57.
         | Crossref | GoogleScholarGoogle Scholar | 25087106PubMed |

[8]  C. F. Carolin, P. S. Kumar, A. Saravanan, G. J. Joshiba, M. Naushad, J. Environ. Chem. Eng. 2017, 5, 2782.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  L. Ruihua, Z. Lin, T. Tao, L. Bo, J. Hazard. Mater. 2011, 190, 669.
         | Crossref | GoogleScholarGoogle Scholar | 21514994PubMed |

[10]  A. Ewecharoen, P. Thiravetyan, E. Wendel, H. Bertagnolli, J. Hazard. Mater. 2009, 171, 335.
         | Crossref | GoogleScholarGoogle Scholar | 19576692PubMed |

[11]  M. Vesali-Naseh, M. R. Vesali Naseh, P. Ameri, J. Clean. Prod. 2021, 291, 125917.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  E. Deliyanni, A. Arabatzidou, N. Tzoupanos, K. Matis, Adsorpt. Sci. Technol. 2012, 30, 627.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  L. Rani, J. Kaushal, A. L. Srivastav, P. Mahajan, Environ. Sci. Pollut. Res. Int. 2020, 27, 44771.
         | Crossref | GoogleScholarGoogle Scholar | 32975757PubMed |

[14]  J. Li, X. Wang, G. Zhao, C. Chen, Z. Chai, A. Alsaedi, et al. Chem. Soc. Rev. 2018, 47, 2322.
         | Crossref | GoogleScholarGoogle Scholar | 29498381PubMed |

[15]  K. O. Adebowale, E. I. Unuabonah, B. I. Olu-Owolabi, Chem. Eng. J. 2008, 136, 99.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  L. Giraldo, J. C. Moreno-Piraján, Braz. J. Chem. Eng. 2008, 25, 143.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  J. Ru, X. Wang, F. Wang, X. Cui, X. Du, X. Lu, Ecotoxicol. Environ. Saf. 2021, 208, 111577.
         | Crossref | GoogleScholarGoogle Scholar | 33160184PubMed |

[18]  J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, et al. J. Am. Chem. Soc. 2008, 130, 13850.
         | Crossref | GoogleScholarGoogle Scholar | 18817383PubMed |

[19]  J. Winarta, B. Shan, S. M. McIntyre, L. Ye, C. Wang, J. Liu, et al. Cryst. Growth Des. 2020, 20, 1347.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  Y. Feng, Q. Chen, M. Jiang, J. Yao, Ind. Eng. Chem. Res. 2019, 58, 17646.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  C. A. Trickett, K. J. Gagnon, S. Lee, F. Gándara, H. B. Bürgi, O. M. Yaghi, Angew. Chem. Int. Ed. 2015, 54, 11162.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  K. Wang, J. Gu, N. Yin, Ind. Eng. Chem. Res. 2017, 56, 1880.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  H. Saleem, U. Ra, R. P. Davies, Microporous Mesoporous Mater. 2016, 221, 238.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  X. Zhao, Y. Wang, Y. Li, W. Xue, J. Li, H. Wu, et al. J. Chem. Eng. Data 2019, 64, 2728.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  G. S. Morcos, A. A. Ibrahim, M. M. H. El-Sayed, M. S. El-Shall, J. Environ. Chem. Eng. 2021, 9, 105191.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  N. Yin, K. Wang, Z. Li, Chem. Lett. 2016, 45, 625.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  M. Vandichel, J. Hajek, A. Ghysels, A. De Vos, M. Waroquier, V. Van Speybroeck, CrystEngComm 2016, 18, 7056.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  G. C. Shearer, S. Chavan, J. Ethiraj, J. G. Vitillo, S. Svelle, U. Olsbye, et al. Chem. Mater. 2014, 26, 4068.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  J. M. Taylor, T. Komatsu, S. Dekura, K. Otsubo, M. Takata, H. Kitagawa, J. Am. Chem. Soc. 2015, 137, 11498.
         | Crossref | GoogleScholarGoogle Scholar | 26302312PubMed |

[30]  R. Wei, C. A. Gaggioli, G. Li, T. Islamoglu, Z. Zhang, P. Yu, et al. Chem. Mater. 2019, 31, 1655.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  G. C. Shearer, S. Chavan, S. Bordiga, S. Svelle, U. Olsbye, K. P. Lillerud, Chem. Mater. 2016, 28, 3749.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  L. Shimoni-Livny, J. P. Glusker, C. W. Bock, Inorg. Chem. 1998, 37, 1853.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  A. Moncomble, J. P. Cornard, M. Meyer, J. Mol. Model. 2017, 23, 24.
         | 28064375PubMed |

[34]  I. Persson, K. Lyczko, D. Lundberg, L. Eriksson, A. Pjaczek, Inorg. Chem. 2011, 50, 1058.
         | Crossref | GoogleScholarGoogle Scholar | 21226482PubMed |

[35]  C. Gourlaouen, H. Gérard, O. Parisel, Chem. – Eur. J. 2006, 12, 5024.
         | Crossref | GoogleScholarGoogle Scholar | 16642524PubMed |

[36]  M. C. F. Wander, A. E. Clark, Inorg. Chem. 2008, 47, 8233.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  M.-C. Van Severen, U. Ryde, O. Parisel, J.-P. Piquemal, J. Chem. Theory Comput. 2013, 9, 2416.
         | Crossref | GoogleScholarGoogle Scholar | 26583732PubMed |

[38]  T. S. Hofer, B. M. Rode, J. Chem. Phys. 2004, 121, 6406.
         | Crossref | GoogleScholarGoogle Scholar | 15446939PubMed |

[39]  A. M. Kuznetsov, A. N. Masliy, G. V. Korshin, J. Mol. Model. 2018, 24, 193.
         | Crossref | GoogleScholarGoogle Scholar | 29974247PubMed |

[40]  A. Bhattacharjee, T. S. Hofer, A. B. Pribil, B. R. Randolf, L. H. V. Lim, A. F. Lichtenberger, B. M. Rode, J. Phys. Chem. B 2009, 113, 13007.
         | Crossref | GoogleScholarGoogle Scholar | 19728688PubMed |

[41]  C. S. Babu, C. Lim, J. Phys. Chem. A 2006, 110, 691.
         | Crossref | GoogleScholarGoogle Scholar | 16405342PubMed |

[42]  S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
         | Crossref | GoogleScholarGoogle Scholar | 20423165PubMed |

[43]  S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
         | Crossref | GoogleScholarGoogle Scholar | 21370243PubMed |

[44]  J. Da Chai, M. Head-Gordon, J. Chem. Phys. 2008, 128, 084106..

[45]  N. Mardirossian, M. Head-Gordon, Phys. Chem. Chem. Phys. 2014, 16, 9904.
         | Crossref | GoogleScholarGoogle Scholar | 24430168PubMed |

[46]  A. Najibi, L. Goerigk, J. Chem. Theory Comput. 2018, 14, 5725.
         | Crossref | GoogleScholarGoogle Scholar | 30299953PubMed |

[47]  C. S. Cox, V. Cossich Galicia, M. Lessio, J. Phys. Chem. C 2021, 125, 3157.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  M. K. Kesharwani, J. M. L. Martin, Theor. Chem. Acc. 2014, 133, 1452.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  R. A. Kendall, T. H. Dunning, R. J. Harrison, J. Chem. Phys. 1992, 96, 6796.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  K. A. Peterson, J. Chem. Phys. 2003, 119, 11099.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  B. Metz, H. Stoll, M. Dolg, J. Chem. Phys. 2000, 113, 2563.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  W. J. Hehre, K. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
         | Crossref | GoogleScholarGoogle Scholar |

[57]  P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213.
         | Crossref | GoogleScholarGoogle Scholar |

[58]  W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284.
         | Crossref | GoogleScholarGoogle Scholar |

[59]  F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
         | Crossref | GoogleScholarGoogle Scholar | 16240044PubMed |

[60]  F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057.
         | Crossref | GoogleScholarGoogle Scholar | 16633586PubMed |

[61]  J. Ye, J. K. Johnson, ACS Catal. 2015, 5, 2921.
         | Crossref | GoogleScholarGoogle Scholar |

[62]  K. C. Kim, D. Yu, R. Q. Snurr, Langmuir 2013, 29, 1446.
         | Crossref | GoogleScholarGoogle Scholar | 23305323PubMed |

[63]  T. L. Ho, Chem. Rev. 1975, 75, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[64]  B. Sharma, Y. I. Neela, G. Narahari Sastry, J. Comput. Chem. 2016, 37, 992.
         | Crossref | GoogleScholarGoogle Scholar | 26833683PubMed |

[65]  S. Biswas, J. Zhang, Z. Li, Y. Y. Liu, M. Grzywa, L. Sun, et al. Dalton Trans. 2013, 4730.
         | Crossref | GoogleScholarGoogle Scholar | 23361454PubMed |

[66]  S. Chavan, J. G. Vitillo, D. Gianolio, O. Zavorotynska, B. Civalleri, S. Jakobsen, et al. Phys. Chem. Chem. Phys. 2012, 14, 1614.
         | Crossref | GoogleScholarGoogle Scholar | 22187720PubMed |

[67]  M. Wehbe, B. J. Abu Tarboush, M. Shehadeh, M. Ahmad, Chem. Eng. Sci. 2020, 214, 115396.
         | Crossref | GoogleScholarGoogle Scholar |

[68]  L. A. Richards, A. I. Schäfer, B. S. Richards, B. Corry, Small 2012, 8, 1701.
         | Crossref | GoogleScholarGoogle Scholar | 22434668PubMed |

[69]  G. Feng, R. Qiao, J. Huang, B. G. Sumpter, V. Meunier, J. Phys. Chem. C 2010, 114, 18012.
         | Crossref | GoogleScholarGoogle Scholar |

[70]  A. H. Ibrahim, W. A. El-Mehalmey, R. R. Haikal, M. E. A. Safy, M. Amin, H. R. Shatla, et al. Inorg. Chem. 2019, 58, 15078.
         | Crossref | GoogleScholarGoogle Scholar | 31661254PubMed |

[71]  P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864.
         | Crossref | GoogleScholarGoogle Scholar |

[72]  W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.
         | Crossref | GoogleScholarGoogle Scholar |

[73]  F. Neese, F. Wennmohs, U. Becker, C. Riplinger, J. Chem. Phys. 2020, 152, 224108.
         | Crossref | GoogleScholarGoogle Scholar | 32534543PubMed |

[74]  F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73.
         | Crossref | GoogleScholarGoogle Scholar |

[75]  F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1327.
         | Crossref | GoogleScholarGoogle Scholar |

[76]  F. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys. 2009, 356, 98.
         | Crossref | GoogleScholarGoogle Scholar |

[77]  D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chim. Acta 1990, 77, 123.
         | Crossref | GoogleScholarGoogle Scholar |

[78]  J. Zheng, X. Xu, D. G. Truhlar, Theor. Chem. Acc. 2011, 128, 295.
         | Crossref | GoogleScholarGoogle Scholar |

[79]  V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995.
         | Crossref | GoogleScholarGoogle Scholar |

[80]  D. M. York, M. Karplus, J. Phys. Chem. A 1999, 103, 11060.
         | Crossref | GoogleScholarGoogle Scholar |

[81]  J. L. Mancuso, A. M. Mroz, K. N. Le, C. H. Hendon, Chem. Rev. 2020, 120, 8641.
         | Crossref | GoogleScholarGoogle Scholar | 32672939PubMed |

[82]  V. Bernales, M. A. Ortuño, D. G. Truhlar, C. J. Cramer, L. Gagliardi, ACS Cent. Sci. 2018, 4, 5.
         | Crossref | GoogleScholarGoogle Scholar | 29392172PubMed |

[83]  H. Demir, S. J. Stoneburner, W. Jeong, D. Ray, X. Zhang, O. K. Farha, et al. J. Phys. Chem. C 2019, 123, 12935.
         | Crossref | GoogleScholarGoogle Scholar |

[84]  D. Yang, S. O. Odoh, J. Borycz, T. C. Wang, O. K. Farha, J. T. Hupp, et al. ACS Catal. 2016, 6, 235.
         | Crossref | GoogleScholarGoogle Scholar |

[85]  D. Yang, S. O. Odoh, T. C. Wang, O. K. Farha, J. T. Hupp, C. J. Cramer, et al. J. Am. Chem. Soc. 2015, 137, 7391.
         | Crossref | GoogleScholarGoogle Scholar | 25990021PubMed |

[86]  D. Yang, M. A. Ortuño, V. Bernales, C. J. Cramer, L. Gagliardi, B. C. Gates, J. Am. Chem. Soc. 2018, 140, 3751.
         | 29458253PubMed |

[87]  C. Caratelli, J. Hajek, F. G. Cirujano, M. Waroquier, F. X. Llabrés i Xamena, V. Van Speybroeck, J. Catal. 2017, 352, 401.
         | Crossref | GoogleScholarGoogle Scholar |

[88]  J. Ho, Phys. Chem. Chem. Phys. 2015, 17, 2859.
         | Crossref | GoogleScholarGoogle Scholar | 25503399PubMed |

[89]  J. A. Keith, E. A. Carter, J. Chem. Theory Comput. 2012, 8, 3187.
         | Crossref | GoogleScholarGoogle Scholar | 26605730PubMed |