Experimental Validation of Quantum Circuit Rules in Molecular Junctions*
Elena Gorenskaia A , Masnun Naher A , Lakshya Daukiya A B , Stephen A. Moggach A , David Costa Milan C , Andrea Vezzoli C , Colin J. Lambert D , Richard J. Nichols C , Thomas Becker E and Paul J. Low A FA School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
B Present address: Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur 342037, India.
C Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
D Department of Physics, Lancaster University, Lancaster LA1 4YB, UK.
E School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
F Corresponding author. Email: paul.low@uwa.edu.au
Australian Journal of Chemistry 74(11) 806-818 https://doi.org/10.1071/CH21136
Submitted: 5 June 2021 Accepted: 22 July 2021 Published: 1 September 2021
Journal Compilation © CSIRO 2021 Open Access CC BY-NC-ND
Abstract
A series of diarylacetylene (tolane) derivatives functionalised at the 4- and 4′-positions by thiolate, thioether, or amine groups capable of serving as anchor groups to secure the molecules within a molecular junction have been prepared and characterised. The series of compounds have a general form X-B-X, Y-B-Y, and X-B-Y where X and Y represent anchor groups and B the molecular bridge. The single-molecule conductance values determined by the scanning tunnelling microscope break-junction method are found to be in excellent agreement with the predictions made on the basis of a recently proposed ‘molecular circuit law’, which states ‘the conductance of an asymmetric molecule X-B-Y is the geometric mean of the conductance of the two symmetric molecules derived from it, and .’ The experimental verification of the circuit law, which holds for systems in which the constituent moieties X, B, and Y are weakly coupled and whose conductance takes place via off-resonance tunnelling, gives further confidence in the use of this relationship in the design of future compounds for use in molecular electronics research.
Keywords: molecular electronics, quantum interference, alkynes.
References
[1] S. Marques-Gonzalez, P. J. Low, Aust. J. Chem. 2016, 69, 244.| Crossref | GoogleScholarGoogle Scholar |
[2] K. Wang, B. Q. Xu, Top. Curr. Chem. 2017, 375, 17.
| Crossref | GoogleScholarGoogle Scholar |
[3] D. Xiang, X. L. Wang, C. C. Jia, T. Lee, X. F. Guo, Chem. Rev. 2016, 116, 4318.
| Crossref | GoogleScholarGoogle Scholar | 26979510PubMed |
[4] R. L. McCreery, A. J. Bergren, Adv. Mater. 2009, 21, 4303.
| Crossref | GoogleScholarGoogle Scholar | 26042937PubMed |
[5] F. Chen, J. Hihath, Z. F. Huang, X. L. Li, N. J. Tao, Annu. Rev. Phys. Chem. 2007, 58, 535.
| Crossref | GoogleScholarGoogle Scholar | 17134372PubMed |
[6] J. P. Launay, Coord. Chem. Rev. 2013, 257, 1544.
| Crossref | GoogleScholarGoogle Scholar |
[7] B. Mann, H. Kuhn, J. Appl. Phys. 1971, 42, 4398.
| Crossref | GoogleScholarGoogle Scholar |
[8] E. Gorenskaia, K. L. Turner, S. Martin, P. Cea, P. J. Low, Nanoscale 2021, 13, 9055.
| Crossref | GoogleScholarGoogle Scholar | 34042128PubMed |
[9] L. Herrer, S. Martin, P. Cea, Appl. Sci. 2020, 10, 6064.
| Crossref | GoogleScholarGoogle Scholar |
[10] A. Vilan, D. Aswal, D. Cahen, Chem. Rev. 2017, 117, 4248.
| Crossref | GoogleScholarGoogle Scholar | 28177226PubMed |
[11] B. Branchi, F. C. Simeone, M. A. Rampi, Top. Curr. Chem. 2011, 313, 85.
| Crossref | GoogleScholarGoogle Scholar |
[12] B. Q. Xu, N. J. J. Tao, Science 2003, 301, 1221.
| Crossref | GoogleScholarGoogle Scholar |
[13] W. Haiss, H. van Zalinge, S. J. Higgins, D. Bethell, H. Hobenreich, D. J. Schiffrin, R. J. Nichols, J. Am. Chem. Soc. 2003, 125, 15294.
| Crossref | GoogleScholarGoogle Scholar | 14664565PubMed |
[14] L. Wang, L. Wang, L. Zhang, D. Xiang, Top. Curr. Chem. 2017, 375, 61.
| Crossref | GoogleScholarGoogle Scholar |
[15] P. T. Mathew, F. Z. Fang, Engineering 2018, 4, 760.
| Crossref | GoogleScholarGoogle Scholar |
[16] H. L. Chen, J. F. Stoddart, Nat. Rev. Mater. 2021,
| Crossref | GoogleScholarGoogle Scholar |
[17] H. M. Osorio, S. Catarelli, P. Cea, J. B. G. Gluyas, F. Hartl, S. J. Higgins, E. Leary, P. J. Low, S. Martin, R. J. Nichols, J. Tory, J. Ulstrup, A. Vezzoli, D. C. Milan, Q. Zeng, J. Am. Chem. Soc. 2015, 137, 14319.
| Crossref | GoogleScholarGoogle Scholar | 26488257PubMed |
[18] S. Ciampi, N. Darwish, H. M. Aitken, I. Diez-Perez, M. L. Coote, Chem. Soc. Rev. 2018, 47, 5146.
| Crossref | GoogleScholarGoogle Scholar | 29947390PubMed |
[19] R. J. Nichols, S. J. Higgins, Acc. Chem. Res. 2016, 49, 2640.
| Crossref | GoogleScholarGoogle Scholar | 27714992PubMed |
[20] K. Jiang, S. J. Pookpanratana, T. Ren, S. N. Natoli, B. A. Sperling, J. Robertson, C. A. Richter, S. Yu, Q. L. Li, Appl. Phys. Lett. 2019, 115, 162102.
| Crossref | GoogleScholarGoogle Scholar |
[21] S. Pookpanratana, H. Zhu, E. G. Bittle, S. N. Natoli, T. Ren, C. A. Richter, Q. Li, C. A. Hacker, J. Phys. Condens. Matter 2016, 28, 094009.
| Crossref | GoogleScholarGoogle Scholar | 26871549PubMed |
[22] V. Parkula, M. S. Maglione, S. Casalini, Q. M. Zhang, P. Greco, C. A. Bortolotti, C. Rovira, M. Mas-Torrent, F. Biscarini, Adv. Electron. Mater. 2019, 5, 1800875.
| Crossref | GoogleScholarGoogle Scholar |
[23] S. K. Saxena, U. M. Tefashe, M. Supur, R. L. McCreery, ACS Sens. 2021, 6, 513.
| Crossref | GoogleScholarGoogle Scholar | 33315386PubMed |
[24] C. P. Tao, C. C. Jiang, Y. H. Wang, J. F. Zheng, Y. Shao, X. S. Zhou, J. Phys. Chem. Lett. 2020, 11, 10023.
| Crossref | GoogleScholarGoogle Scholar | 33179941PubMed |
[25] E. Burzuri, A. Garcia-Fuente, V. Garcia-Suarez, K. S. Kumar, M. Ruben, J. Ferrer, H. S. J. van der Zant, Nanoscale 2018, 10, 7905.
| Crossref | GoogleScholarGoogle Scholar | 29682641PubMed |
[26] M. Ormaza, P. Abufager, B. Verlhac, N. Bachellier, M. L. Bocquet, N. Lorente, L. Limot, Nat. Commun. 2017, 8, 1974.
| Crossref | GoogleScholarGoogle Scholar | 29215014PubMed |
[27] S. Wagner, F. Kisslinger, S. Ballmann, F. Schramm, R. Chandrasekar, T. Bodenstein, O. Fuhr, D. Secker, K. Fink, M. Ruben, H. B. Weber, Nat. Nanotechnol. 2013, 8, 575.
| Crossref | GoogleScholarGoogle Scholar | 23851359PubMed |
[28] C. Herrmann, G. C. Solomon, M. A. Ratner, J. Am. Chem. Soc. 2010, 132, 3682.
| Crossref | GoogleScholarGoogle Scholar | 20192192PubMed |
[29] R. Liu, S. H. Ke, W. Yang, H. U. Baranger, J. Chem. Phys. 2007, 127, 141104.
| Crossref | GoogleScholarGoogle Scholar | 17994823PubMed |
[30] R. Liu, S. H. Ke, H. U. Baranger, W. T. Yang, Nano Lett. 2005, 5, 1959.
| Crossref | GoogleScholarGoogle Scholar | 16218717PubMed |
[31] K. Wang, E. Meyhofer, P. Reddy, Adv. Funct. Mater. 2020, 30, 1904534.
| Crossref | GoogleScholarGoogle Scholar |
[32] X. T. Zhao, C. C. Huang, M. Gulcur, A. S. Batsanov, M. Baghernejad, W. J. Hong, M. R. Bryce, T. Wandlowski, Chem. Mater. 2013, 25, 4340.
| Crossref | GoogleScholarGoogle Scholar |
[33] Q. Lu, C. Yao, X. H. Wang, F. S. Wang, J. Phys. Chem. C 2012, 116, 17853.
| Crossref | GoogleScholarGoogle Scholar |
[34] J. R. Quinn, F. W. Foss, L. Venkataraman, R. Breslow, J. Am. Chem. Soc. 2007, 129, 12376.
| Crossref | GoogleScholarGoogle Scholar | 17887757PubMed |
[35] M. Naher, D. C. Milan, O. A. Al-Owaedi, I. J. Planje, S. Bock, J. Hurtado-Gallego, P. Bastante, Z. M. Abd Dawood, L. Rincon-Garcia, G. Rubio-Bollinger, S. J. Higgins, N. Agrait, C. J. Lambert, R. J. Nichols, P. J. Low, J. Am. Chem. Soc. 2021, 143, 3817.
| Crossref | GoogleScholarGoogle Scholar | 33606524PubMed |
[36] J. Ferrer, C. J. Lambert, V. M. Garcia-Suarez, D. Z. Manrique, D. Visontai, L. Oroszlany, R. Rodriguez-Ferradas, I. Grace, S. W. D. Bailey, K. Gillemot, H. Sadeghi, L. A. Algharagholy, New J. Phys. 2014, 16, 093029.
| Crossref | GoogleScholarGoogle Scholar |
[37] C. J. Lambert, S. X. Liu, Chem. – Eur. J. 2018, 24, 4193.
| Crossref | GoogleScholarGoogle Scholar | 29120523PubMed |
[38] D. Z. Manrique, Q. Al-Galiby, W. J. Hong, C. J. Lambert, Nano Lett. 2016, 16, 1308.
| Crossref | GoogleScholarGoogle Scholar | 26784577PubMed |
[39] W. J. Hong, D. Z. Manrique, P. Moreno-Garcia, M. Gulcur, A. Mishchenko, C. J. Lambert, M. R. Bryce, T. Wandlowski, J. Am. Chem. Soc. 2012, 134, 2292.
| Crossref | GoogleScholarGoogle Scholar |
[40] P. Moreno-Garcia, M. Gulcur, D. Z. Manrique, T. Pope, W. J. Hong, V. Kaliginedi, C. C. Huang, A. S. Batsanov, M. R. Bryce, C. Lambert, T. Wandlowski, J. Am. Chem. Soc. 2013, 135, 12228.
| Crossref | GoogleScholarGoogle Scholar | 23875671PubMed |
[41] M. R. Bryce, J. Mater. Chem. C Mater. Opt. Electron. Devices 2021,
| Crossref | GoogleScholarGoogle Scholar |
[42] D. Nishimura, T. Oshikiri, Y. Takashima, A. Hashidzume, H. Yamaguchi, A. Harada, J. Org. Chem. 2008, 73, 2496.
| Crossref | GoogleScholarGoogle Scholar | 18336039PubMed |
[43] M. Naher, S. Bock, Z. M. Langtry, K. M. O’Malley, A. N. Sobolev, B. W. Skelton, M. Korb, P. J. Low, Organometallics 2020, 39, 4667.
| Crossref | GoogleScholarGoogle Scholar |
[44] M. S. Hybertsen, L. Venkataraman, Acc. Chem. Res. 2016, 49, 452.
| Crossref | GoogleScholarGoogle Scholar | 26938931PubMed |
[45] C. J. Lambert, Chem. Soc. Rev. 2015, 44, 875.
| Crossref | GoogleScholarGoogle Scholar | 25255961PubMed |
[46] C. J. Lambert, Quantum Transport in Nanostructures and Molecules: An Introduction to Molecular Electronics 2021 (IOP Publishing: Bristol, UK).
[47] A. K. Flatt, Y. X. Yao, F. Maya, J. M. Tour, J. Org. Chem. 2004, 69, 1752.
| Crossref | GoogleScholarGoogle Scholar | 14987042PubMed |
[48] N. Miyaura, A. Suzuki, Org. Synth. 1990, 68, 130.
| Crossref | GoogleScholarGoogle Scholar |
[49] S. S. Zalesskiy, V. P. Ananikov, A. J. Reay, I. J. S. Fairlamb, Inorg. Synth. 2018, 37, 183.
[50] G. M. Sheldrick, Acta Crystallogr. A 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar |
[51] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
| Crossref | GoogleScholarGoogle Scholar |
[52] A. Thorn, G. M. Sheldrick, Acta Crystallogr. A 2008, 64, C221.
| Crossref | GoogleScholarGoogle Scholar |