Synthesis and Study of Prototropic Tautomerism of 2-(2-Furyl)-1-hydroxyimidazoles
Polina A. Nikitina A B C , Tatiana Yu. Koldaeva A , Marina A. Zakharko B and Valery P. Perevalov AA Department of Fine Organic Synthesis and Chemistry of Dyes, D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya Square, 9, Moscow, 125047, Russia.
B A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Street, 28, Moscow, 119991, Russia.
C Corresponding author. Email: polinandrevna@yandex.ru
Australian Journal of Chemistry 73(11) 1098-1104 https://doi.org/10.1071/CH20044
Submitted: 10 February 2020 Accepted: 26 March 2020 Published: 4 June 2020
Abstract
Novel 2-(2-furyl)imidazole derivatives were synthesised. 2-(2-Furyl)-1-methoxyimidazoles and 2-(2-furyl)-1-methylimidazole 3-oxides were used as model compounds in the study of the prototropic tautomerism of 2-(2-furyl)-1-hydroxyimidazoles by means of 1H, 13C NMR and UV/vis spectroscopies. It was demonstrated that the interaction of the π-excessive furyl moiety with an electron-withdrawing carbonyl group in position 5 of imidazole stabilised the N-hydroxy tautomeric form in both deuterated chloroform and d6-DMSO. In ethanol the N-oxide tautomer is also present along with the prevailing N-hydroxyimidazole.
References
[1] D. R. Williams, M.-R. Lee, Y.-A. Song, S.-K. Ko, G.-H. Kim, I. Shin, J. Am. Chem. Soc. 2007, 129, 9258.| Crossref | GoogleScholarGoogle Scholar | 17622149PubMed |
[2] G.-H. Kim, D. Halder, J. Park, W. Namkung, I. Shin, Angew. Chem. Int. Ed. 2014, 53, 9271.
| Crossref | GoogleScholarGoogle Scholar |
[3] L. L. Chang, K. L. Sidler, M. A. Cascieri, S. de Laszlo, G. Koch, B. Li, M. MacCoss, N. Mantlo, S. O’Keefe, M. Pang, A. Rolando, W. K. Hagmann, Bioorg. Med. Chem. Lett. 2001, 11, 2549.
| Crossref | GoogleScholarGoogle Scholar | 11549467PubMed |
[4] A. K. Takle, M. J. B. Brown, S. Davies, D. K. Dean, G. Francis, A. Gaiba, A. W. Hird, F. D. King, P. J. Lovell, A. Naylor, A. D. Reith, J. G. Steadman, D. M. Wilson, Bioorg. Med. Chem. Lett. 2006, 16, 378.
| Crossref | GoogleScholarGoogle Scholar | 16260133PubMed |
[5] F. Heider, F. Ansideri, R. Tesch, T. Pantsar, U. Haun, E. Döring, M. Kudolo, A. Poso, W. Albrecht, S. A. Laufer, P. Koch, Eur. J. Med. Chem. 2019, 175, 309.
| Crossref | GoogleScholarGoogle Scholar | 31096153PubMed |
[6] M. S. Khan, S. A. Siddiqui, M. S. R. A. Siddiqui, U. Goswami, K. V. Srinivasan, M. I. Khan, Chem. Biol. Drug Des. 2008, 72, 197.
| Crossref | GoogleScholarGoogle Scholar | 18680533PubMed |
[7] M. Rivara, A. R. Baheti, M. Fantini, G. Cocconcelli, C. Ghiron, C. L. Kalmar, N. Singh, E. C. Merrick, M. K. Patel, V. Zuliani, Bioorg. Med. Chem. Lett. 2008, 18, 5460.
| Crossref | GoogleScholarGoogle Scholar | 18818069PubMed |
[8] V. Zuliani, M. Fantini, A. Nigam, J. P. Stables, M. K. Patel, M. Rivara, Bioorg. Med. Chem. 2010, 18, 7957.
| Crossref | GoogleScholarGoogle Scholar | 20943396PubMed |
[9] C.-H. Tseng, C.-Y. Li, C.-C. Chiu, H.-T. Hu, C.-H. Han, Y.-L. Chen, C.-C. Tzeng, Mol. Divers. 2012, 16, 697.
| Crossref | GoogleScholarGoogle Scholar | 23011016PubMed |
[10] A. P. G. Nikalje, S. V. Tiwari, A. P. Sarkate, K. S. Karnik, Med. Chem. Res. 2018, 27, 592.
| Crossref | GoogleScholarGoogle Scholar |
[11] G. Mlostoń, M. Jasiński, A. Wróblewska, H. Heimgartner, Curr. Org. Chem. 2016, 20, 1359.
| Crossref | GoogleScholarGoogle Scholar |
[12] P. A. Nikitina, V. P. Perevalov, Chem. Heterocycl. Compd. 2017, 53, 123.
| Crossref | GoogleScholarGoogle Scholar |
[13] H. Ertel, G. Heubach, Liebigs Ann. Chem. 1974, 1399.
| Crossref | GoogleScholarGoogle Scholar |
[14] V. A. Samsonov, Russ. J. Org. Chem. 2017, 53, 66.
| Crossref | GoogleScholarGoogle Scholar |
[15] I. A. Os’kina, A. Ya. Tikhonov, Russ. J. Org. Chem. 2017, 53, 1239.
| Crossref | GoogleScholarGoogle Scholar |
[16] P. A. Nikitina, L. G. Kuz’mina, V. P. Perevalov, I. I. Tkach, Tetrahedron 2013, 69, 3249.
| Crossref | GoogleScholarGoogle Scholar |
[17] P. A. Nikitina, A. S. Peregudov, T. Yu. Koldaeva, L. G. Kuz’mina, E. I. Adiulin, I. I. Tkach, V. P. Perevalov, Tetrahedron 2015, 71, 5217.
| Crossref | GoogleScholarGoogle Scholar |
[18] P. A. Nikitina, T. Yu. Koldaeva, V. S. Mityanov, V. S. Miroshnikov, E. I. Basanova, V. P. Perevalov, Aust. J. Chem. 2019, 72, 699.
| Crossref | GoogleScholarGoogle Scholar |
[19] P. A. Nikitina, N. I. Bormotov, L. N. Shishkina, A. Ya. Tikhonov, V. P. Perevalov, Russ. Chem. Bull. Int. Ed. 2019, 68, 634.
| Crossref | GoogleScholarGoogle Scholar |
[20] J. Fabian, H. Hartman, Light Absorption of Organic Compounds 1980 (Springer: Berlin).
[21] D. L. Pavia, G. M. Lampman, G. S. Kriz, J. R. Vyvyan, Introduction to Spectroscopy, 5th edn 2015 (Cengage Learning: Boston, MA).
[22] A. Ya. Jeltov, V. P. Perevalov, Khimiya i technologuiya organicheskikh krasitelei: tsvetnost’ soedineniy, 2nd edn 2017 (Urait: Moscow) [Chemistry and Technology of Organic Dyes: Colouring of the Compounds, 2nd edn, in Russian].