Electrochemical Properties of a Verdazyl Radical in Room Temperature Ionic Liquids
Junqiao Lee A , Chiara Caporale A , Allan J. McKinley B , Rebecca O. Fuller A C and Debbie S. Silvester A DA Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
B Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
C Current address: School of Natural Sciences – Chemistry, University of Tasmania, Hobart, Tas. 7001, Australia.
D Corresponding author. Email: d.silvester-dean@curtin.edu.au
Australian Journal of Chemistry 73(10) 1001-1009 https://doi.org/10.1071/CH19575
Submitted: 5 November 2019 Accepted: 13 January 2020 Published: 19 May 2020
Abstract
Room temperature ionic liquids (RTILs) have been widely investigated as alternative electrochemical solvents for a range of dissolved species over the past two decades. However, the behaviour of neutral radicals dissolved in RTILs is relatively unexplored. In this work, the electrochemistry of a stable verdazyl radical – 1,5-dimethyl-3-phenyl-6-oxoverdazyl (MPV) – has been studied on a platinum thin-film electrode using cyclic voltammetry and chronoamperometry in 10 different RTILs. The organic solvent propylene carbonate is also employed as a comparison. The nature of the solvent system was found to have a large effect on the electrochemical behaviour, particularly on the reduction reaction of the verdazyl radical. Chronoamperometry on a microdisk electrode was used to calculate diffusion coefficients (D), and plots of D versus the inverse of viscosity were linear, suggesting typical hydrodynamic diffusional characteristics of the radical, in line with the behaviour of dissolved neutral and charged compounds (e.g. ferrocene and cobaltocenium) in RTILs. Overall, this study demonstrates that different RTILs have a significant influence on the electrochemistry of MPV, and therefore careful selection of the solvent system for electrochemical applications is advised.
References
[1] D. S. Silvester, Analyst 2011, 136, 4871.| Crossref | GoogleScholarGoogle Scholar | 22013585PubMed |
[2] H. Liu, H. Yu, J. Mater. Sci. Technol. 2019, 35, 674.
| Crossref | GoogleScholarGoogle Scholar |
[3] I. Osada, H. De Vries, B. Scrosati, S. Passerini, Angew. Chem. Int. Ed. 2016, 55, 500.
| Crossref | GoogleScholarGoogle Scholar |
[4] M. Armand, F. Endres, D. MacFarlane, H. Ohno, B. Scrosati, Nat. Mater. 2009, 8, 621.
| Crossref | GoogleScholarGoogle Scholar | 19629083PubMed |
[5] M. C. Buzzeo, R. G. Evans, R. G. Compton, Phys. Chem. Chem. Phys. 2004, 5, 1106.
| Crossref | GoogleScholarGoogle Scholar |
[6] D. R. MacFarlane, N. Tachikawa, M. Forsyth, J. M. Pringle, P. C. Howlett, G. D. Elliott, J. H. Davis, M. Watanabe, P. Simon, C. A. Angell, Energy Environ. Sci. 2014, 7, 232.
| Crossref | GoogleScholarGoogle Scholar |
[7] M. J. Earle, K. R. Seddon, Pure Appl. Chem. 2000, 72, 1391.
| Crossref | GoogleScholarGoogle Scholar |
[8] F. Endres, S. Zein El Abedin, Phys. Chem. Chem. Phys. 2006, 8, 2101.
| Crossref | GoogleScholarGoogle Scholar | 16751868PubMed |
[9] P. Wasserscheid, W. Keim, Angew. Chem. Int. Ed. 2000, 39, 3772.
| Crossref | GoogleScholarGoogle Scholar |
[10] T. Welton, Chem. Rev. 1999, 99, 2071.
| Crossref | GoogleScholarGoogle Scholar | 11849019PubMed |
[11] L. E. Barrosse-Antle, A. M. Bond, R. G. Compton, A. M. O’Mahony, E. I. Rogers, D. S. Silvester, Chem. Asian J. 2010, 5, 202.
| Crossref | GoogleScholarGoogle Scholar | 20013990PubMed |
[12] R. G. Evans, A. J. Wain, C. Hardacre, R. G. Compton, ChemPhysChem 2005, 6, 1035.
| Crossref | GoogleScholarGoogle Scholar | 15937896PubMed |
[13] E. I. Rogers, D. S. Silvester, S. E. Ward Jones, L. Aldous, C. Hardacre, A. J. Russell, S. G. Davies, R. G. Compton, J. Phys. Chem. C 2007, 111, 13957.
| Crossref | GoogleScholarGoogle Scholar |
[14] S. Ernst, K. R. Ward, S. E. Norman, C. Hardacre, R. G. Compton, Phys. Chem. Chem. Phys. 2013, 15, 6382.
| Crossref | GoogleScholarGoogle Scholar | 23525257PubMed |
[15] M. M. Islam, T. Imase, T. Okajima, M. Takahashi, Y. Niikura, N. Kawashima, Y. Nakamura, T. Ohsaka, J. Phys. Chem. A 2009, 113, 912.
| Crossref | GoogleScholarGoogle Scholar | 19133769PubMed |
[16] R. G. Evans, R. G. Compton, ChemPhysChem 2006, 7, 488.
| Crossref | GoogleScholarGoogle Scholar | 16463338PubMed |
[17] I. D. Brown, Chem. Rev. 2009, 109, 6858.
| Crossref | GoogleScholarGoogle Scholar | 19728716PubMed |
[18] C. Train, L. Norel, M. Baumgarten, Coord. Chem. Rev. 2009, 253, 2342.
| Crossref | GoogleScholarGoogle Scholar |
[19] I. Ratera, J. Veciana, Chem. Soc. Rev. 2012, 41, 303.
| Crossref | GoogleScholarGoogle Scholar | 21850355PubMed |
[20] L. Beer, J. L. Brusso, A. W. Cordes, R. C. Haddon, M. E. Itkis, K. Kirschbaum, D. S. MacGregor, R. T. Oakley, A. A. Pinkerton, R. W. Reed, J. Am. Chem. Soc. 2002, 124, 9498.
| Crossref | GoogleScholarGoogle Scholar | 12167046PubMed |
[21] M. Souto, L. Yuan, D. C. Morales, L. Jiang, I. Ratera, C. A. Nijhuis, J. Veciana, J. Am. Chem. Soc. 2017, 139, 4262.
| Crossref | GoogleScholarGoogle Scholar | 28282126PubMed |
[22] K. Nakahara, S. Iwasa, M. Satoh, Y. Morioka, J. Iriyama, M. Suguro, E. Hasegawa, Chem. Phys. Lett. 2002, 359, 351.
| Crossref | GoogleScholarGoogle Scholar |
[23] C. Friebe, U. S. Schubert, Top. Curr. Chem. (Z) 2017, 375, 19.
| Crossref | GoogleScholarGoogle Scholar |
[24] J. B. Gilroy, S. D. J. McKinnon, B. D. Koivisto, R. G. Hicks, Org. Lett. 2007, 9, 4837.
| Crossref | GoogleScholarGoogle Scholar | 17927192PubMed |
[25] P. V. Petunin, E. A. Martynko, M. E. Trusova, M. S. Kazantsev, T. V. Rybalova, R. R. Valiev, M. N. Uvarov, E. A. Mostovich, P. S. Postnikov, Eur. J. Org. Chem. 2018, 4802.
| Crossref | GoogleScholarGoogle Scholar |
[26] C. Sporer, I. Ratera, D. Ruiz-Molina, Y. Zhao, J. Vidal-Gancedo, K. Wurst, P. Jaitner, K. Clays, A. Persoons, C. Rovira, J. Veciana, Angew. Chem. Int. Ed. 2004, 43, 5266.
| Crossref | GoogleScholarGoogle Scholar |
[27] A. Heckmann, C. Lambert, J. Am. Chem. Soc. 2007, 129, 5515.
| Crossref | GoogleScholarGoogle Scholar | 17407287PubMed |
[28] R. Kuhn, H. Trischmann, Angew. Chem. Int. Ed. Engl. 1963, 2, 155.
| Crossref | GoogleScholarGoogle Scholar |
[29] F. A. Neugebauer, H. Fischer, Angew. Chem. Int. Ed. Engl. 1980, 19, 724.
| Crossref | GoogleScholarGoogle Scholar |
[30] G. N. Lipunova, T. G. Fedorchenko, O. N. Chupakhin, Russ. Chem. Rev. 2013, 82, 701.
| Crossref | GoogleScholarGoogle Scholar |
[31] J. B. Gilroy, S. D. J. McKinnon, P. Kennepohl, M. S. Zsombor, M. J. Ferguson, L. K. Thompson, R. G. Hicks, J. Org. Chem. 2007, 72, 8062.
| Crossref | GoogleScholarGoogle Scholar | 17887707PubMed |
[32] M. J. Plater, J. P. Sinclair, S. Kemp, T. Gelbrich, M. B. Hursthouse, C. J. Gómez-García, J. Chem. Res. 2006, 515.
| Crossref | GoogleScholarGoogle Scholar |
[33] S. Mecking, V. Monteil, J. Huber, L. Kolb, P. Wehrmann, Macromol. Symp. 2006, 236, 117.
| Crossref | GoogleScholarGoogle Scholar |
[34] E. K. Y. Chen, S. J. Teertstra, D. Chan-Seng, P. O. Otieno, R. G. Hicks, M. K. Georges, Macromolecules 2007, 40, 8609.
| Crossref | GoogleScholarGoogle Scholar |
[35] K. Takechi, Y. Kato, Y. Hase, Adv. Mater. 2015, 27, 2501.
| Crossref | GoogleScholarGoogle Scholar | 25757722PubMed |
[36] P. A. D. Bonhôte, N. Papageorgiou, K. Kalyanasundaram, M. Grätzel, Inorg. Chem. 1996, 35, 1168.
| Crossref | GoogleScholarGoogle Scholar |
[37] D. R. MacFarlane, P. Meakin, J. Sun, N. Amini, J. Phys. Chem. B 1999, 103, 4164.
| Crossref | GoogleScholarGoogle Scholar |
[38] Y. Wang, J. G. Limon-Petersen, R. G. Compton, J. Electroanal. Chem. 2011, 652, 13.
| Crossref | GoogleScholarGoogle Scholar |
[39] D. S. Silvester, A. J. Wain, L. Aldous, C. Hardacre, R. G. Compton, J. Electroanal. Chem. 2006, 596, 131.
| Crossref | GoogleScholarGoogle Scholar |
[40] D. Shoup, A. Szabo, J. Electroanal. Chem. 1982, 140, 237.
| Crossref | GoogleScholarGoogle Scholar |
[41] R. F. Nelson, R. N. Adams, J. Electroanal. Chem. 1967, 13, 184.
| Crossref | GoogleScholarGoogle Scholar |
[42] B. A. López de Mishima, H. T. Mishima, Sens. Actuators B Chem. 2008, 131, 236.
| Crossref | GoogleScholarGoogle Scholar |
[43] S. T. Handy, M. Okello, J. Org. Chem. 2005, 70, 1915.
| Crossref | GoogleScholarGoogle Scholar | 15730322PubMed |
[44] R. G. Evans, O. V. Klymenko, S. A. Saddoughi, C. Hardacre, R. G. Compton, J. Phys. Chem. B 2004, 108, 7878.
| Crossref | GoogleScholarGoogle Scholar |
[45] C. Kang, J. Lee, D. S. Silvester, J. Phys. Chem. C 2016, 120, 10997.
| Crossref | GoogleScholarGoogle Scholar |
[46] E. I. Rogers, D. S. Silvester, D. L. Poole, L. Aldous, C. Hardacre, R. G. Compton, J. Phys. Chem. C 2008, 112, 2729.
| Crossref | GoogleScholarGoogle Scholar |
[47] A. M. O’Mahony, D. S. Silvester, L. Aldous, C. Hardacre, R. G. Compton, J. Chem. Eng. Data 2008, 53, 2884.
| Crossref | GoogleScholarGoogle Scholar |
[48] A. J. Bard, L. A. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn 2000 (Wiley-Interscience: New York, NY).
[49] N. Frenzel, J. Hartley, G. Frisch, Phys. Chem. Chem. Phys. 2017, 19, 28841.
| Crossref | GoogleScholarGoogle Scholar | 29053161PubMed |
[50] L. E. Barrosse-Antle, A. M. Bond, R. G. Compton, A. M. O’Mahony, E. I. Rogers, D. S. Silvester, Chem. – Asian J. 2010, 5, 202.
| Crossref | GoogleScholarGoogle Scholar | 20013990PubMed |
[51] A. Bhattacharjee, A. Luís, J. A. Lopes-da-Silva, M. G. Freire, P. J. Carvalho, J. A. P. Coutinhoa, Fluid Phase Equilib. 2014, 381, 36.
| Crossref | GoogleScholarGoogle Scholar | 25516634PubMed |
[52] P. K. Muhuri, D. K. Hazra, J. Chem. Eng. Data 1995, 40, 582.
| Crossref | GoogleScholarGoogle Scholar |
[53] R. G. Compton, C. E. Banks, Understanding Voltammetry, 2nd edn 2007 (World Scientific: Singapore).
[54] G. Hussain, M. V. Sofianos, J. Lee, C. Gibson, C. E. Buckley, D. Silvester, Electrochem. Commun. 2018, 86, 43.
| Crossref | GoogleScholarGoogle Scholar |
[55] D. S. Silvester, S. U. Uprety, P. J. Wright, M. Massi, S. Stagni, S. M. Muzzioli, J. Phys. Chem. C 2012, 116, 7327.
| Crossref | GoogleScholarGoogle Scholar |
[56] K. R. J. Lovelock, A. Ejigu, S. F. Loh, S. Men, P. Licence, D. A. Walsh, Phys. Chem. Chem. Phys. 2011, 13, 10155.
| Crossref | GoogleScholarGoogle Scholar |
[57] A. W. Taylor, P. Licence, A. P. Abbott, Phys. Chem. Chem. Phys. 2011, 13, 10147.
| Crossref | GoogleScholarGoogle Scholar | 21526251PubMed |
[58] M. A. Vorotyntsev, V. A. Zinovyeva, M. Picquet, Electrochim. Acta 2010, 55, 5063.
| Crossref | GoogleScholarGoogle Scholar |
[59] D. S. Silvester, K. L. Ward, L. Aldous, C. Hardacre, J. Electroanal. Chem. 2008, 618, 53.
| Crossref | GoogleScholarGoogle Scholar |
[60] L. E. Barrosse-Antle, D. S. Silvester, L. Aldous, C. Hardacre, R. G. Compton, J. Phys. Chem. C 2008, 112, 3398.
| Crossref | GoogleScholarGoogle Scholar |
[61] J. C. Araque, S. K. Yadav, M. Shadeck, M. Maroncelli, C. J. Margulis, J. Phys. Chem. B 2015, 119, 7015.
| Crossref | GoogleScholarGoogle Scholar | 25811753PubMed |