Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis, Characterization, and Theoretical Studies of cis-Dichloridobis(8-quinolinethiolato)tin(iv) and bis(8-Sulfanylquinolinium) Hexachloridostannate(iv) Derivatives*

Rajesh Deka https://orcid.org/0000-0002-9460-1784 A B C , Arup Sarkar https://orcid.org/0000-0002-6880-8220 A , Harkesh B. Singh https://orcid.org/0000-0002-0403-0149 A B E , Peter C. Junk https://orcid.org/0000-0002-0683-8918 B D , David R. Turner https://orcid.org/0000-0003-1603-7994 B C E and Glen B. Deacon https://orcid.org/0000-0002-6966-6121 B C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.

B IITB-Monash Research Academy, Mumbai 400076, India.

C School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

D College of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia.

E Corresponding authors. Email: chhbsia@chem.iitb.ac.in; david.turner@monash.edu

Australian Journal of Chemistry 73(12) 1128-1137 https://doi.org/10.1071/CH19561
Submitted: 28 October 2019  Accepted: 16 February 2020   Published: 7 July 2020

Abstract

The structural characterisation of bis(8-sulfanylquinolinium) hexachloridostannate(iv) (2) is reported and the variable reaction behaviour of this compound in different solvents has been explored. In particular, attempted recrystallization of 2 from chloroform and dichloromethane affords two polymorphs of cis-dichloridobis(8-quinolinethiolato)tin(iv), 3m and 3t, respectively. Attempted recrystallization of 2 from methanol gives crystals of 8,8′-dithiodiquinolinium hexachloridostannate(iv) 4. When 2 is dissolved in dimethyl sulfoxide in the presence of air, it undergoes oxidation to afford diquinolinyl-8,8′-disulfide 5. The molecular structures of the isolated compounds 24 are unambiguously authenticated by single crystal X-ray diffraction studies. The electronic structure properties of all the isolated compounds 24 are thoroughly studied by DFT calculations.


References

[1]  (a) V. Prachayasittikul, S. Prachayasittikul, S. Ruchirawat, V. Prachayasittikul, Drug Des. Devel. Ther. 2013, 7, 1157.
         | Crossref | GoogleScholarGoogle Scholar | 24115839PubMed |
      (b) H. R. Dholariya, K. S. Patel, J. C. Patel, A. K. Patel, K. D. Patel, Med. Chem. Res. 2013, 22, 5848.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) B. Y. Choi, B. G. Jang, J. H. Kim, J. N. Seo, G. Wu, M. Sohn, T. N. Chung, S. W. Suh, Neurobiol. Dis. 2013, 54, 382.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) T. Scattolin, F. Visentin, C. Santo, V. Bertolasi, L. Canovese, Dalton Trans. 2016, 45, 11560.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) H. Rao, W.-Q. Yu, H.-Q. Zheng, J. Bonin, Y.-T. Fan, H.-W. Hou, J. Power Sources 2016, 324, 253.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) L. Canovese, F. Visentin, T. Scattolin, C. Santo, V. Bertolasi, Polyhedron 2017, 129, 229.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) A. Casado-Sánchez, C. Martin-Santos, J. M. Padrón, R. Mas-Ballesté, C. Navarro-Ranninger, J. Alemán, S. Cabrera, J. Inorg. Biochem. 2017, 174, 111.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) M. M. McGrady, R. S. Tobias, J. Am. Chem. Soc. 1965, 87, 1909.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) E. O. Schlemper, Inorg. Chem. 1967, 6, 2012.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) V. K. Jain, J. Mason, B. S. Saraswat, R. C. Mehrotra, Polyhedron 1985, 4, 2089.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Y. Kawasaki, Org. Magn. Reson. 1970, 2, 165.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  T. Tanaka, M. Komura, Y. Kawasaki, R. Okawara, J. Org. Chem. 1964, 1, 484.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  S. J. Archer, K. R. Koch, S. Schmidt, Inorg. Chim. Acta 1987, 126, 209.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) Y. Fazaeli, E. Najafi, M. M. Amini, S. W. Ng, Acta Crystallogr. 2009, E65, m270.
      (b) K. M. Lo, S. W. Ng, Acta Crystallogr. 2009, E65, m719.
      (c) Z. F. Chen, Y. Peng, Y.-Q. Gu, Y.-C. Liu, M. Liu, K.-B. Huang, K. Hu, H. Liang, Eur. J. Med. Chem. 2013, 62, 51.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  A. Edinger, Ber. Dtsch. Chem. Ges. 1908, 41, 937.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) J. Banfield, J. Org. Chem. 1960, 25, 300.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) A. Corsini, Q. Fernando, H. Freiser, Anal. Chem. 1963, 35, 1424.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. A. W. Dalziel, D. Kealey, Analyst 1964, 89, 411.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) G. Henkel, B. Krebs, W. Schmidt, Angew. Chem. Int. Ed. Engl. 1992, 31, 1366.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  V. I. Lubenets, N. E. Stadnitskaya, V. P. Novikov, Russ. J. Electrochem. 2000, 36, 851.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) Y. Mido, E. Sekido, Bull. Chem. Soc. Jpn. 1971, 44, 2127.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) L. F. Lindoy, S. E. Livingstone, T. N. Lockyer, Aust. J. Chem. 1966, 19, 1391.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. Pecha, J. Bankovskis, A. Kemme, V. Bel’sky, E. Silin, J. Asaks, Chem. Heterocycl. Compd. 2002, 38, 695.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) E. Kellö, V. Vrábel, A. Lyčka, J. Sivý, Acta Crystallogr. 1993, C49, 1943.

[10]  E. Abele, R. Abele, E. Lukevics, J. Chem. Research (S) 1999, 624.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) J. Otera, J. Organomet. Chem. 1981, 221, 57.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J. Holeček, M. Nádvorník, K. Handlíř, A. Lyčka, J. Organomet. Chem. 1986, 315, 299.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. Schmiedgen, F. Huber, H. Preut, G. Ruisi, R. Barbieri, Appl. Organomet. Chem. 1994, 8, 397.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. Tyagi, G. Kedarnath, A. Wadawale, V. K. Jain, M. Kumar, B. Vishwanadh, RSC Adv. 2015, 5, 62882.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  E. Wächtler, R. Gericke, S. Kutter, E. Brendler, J. Wagler, Main Group Met. Chem. 2013, 36, 181.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  R. D. Shannon, Acta Crystallogr. 1976, A32, 751.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  A. E. Wächtler, A. Kämpfe, K. Krupinski, D. Gerlach, E. Kroke, E. Brendler, J. Wagler, Z. Naturforsch. B: J. Chem. Sci. 2014, 69, 1402.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) M. Rademeyer, Acta Crystallogr. 2004, C60, m55.
      (b) A. Kessentini, T. Dammak, M. Belhouchet, J. Mol. Struct. 2017, 1149, 818.
         | Crossref | GoogleScholarGoogle Scholar |
         (c) L. Pauling, In The Nature of the Chemical Bond, 3rd edn 1960 (Cornell University Press: Ithaca, NY).

[16]  A. Yuchi, M. Shiro, T. Yasui, Anal. Sci. 1990, 6, 923.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyoto, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 2013 (Gaussian Inc.: Wallingford, CT).

[18]  K. Nakamoto (Ed.), Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A: Theory and Applications in Inorganic Chemistry, 6th edn 2009 (John Wiley & Sons, Inc.: Hoboken, NJ).

[19]  SAINT v.2 2012 (Bruker AXS Inc.: Madison, WI).

[20]  CrysAlisPro v. 39 2014 (Agilent Technologies Ltd: Abingdon, Oxfordshire, UK).

[21]  N. P. Cowieson, D. Aragao, M. Clift, D. J. Ericsson, C. Gee, S. J. Harrop, N. Mudie, S. Panjikar, J. R. Price, A. Riboldi-Tunnicliffe, R. Williamson, T. Caradoc-Davies, J. Synchrotron Radiat. 2015, 22, 187.
         | Crossref | GoogleScholarGoogle Scholar | 25537608PubMed |

[22]  T. M. McPhillips, S. E. McPhillips, A. H.-J. Chiu, E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, J. Synchrotron Radiat. 2002, 9, 401.
         | Crossref | GoogleScholarGoogle Scholar | 12409628PubMed |

[23]  W. Kabsch, J. Appl. Cryst. 1993, 26, 795.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  (a) G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) G. Sheldrick, Acta Crystallogr. Sect. A: Cryst. Struct. Commun. 2015, 71, 3.
      (c) G. Sheldrick, Acta Crystallogr. Sect. C: Fundam. Crystallogr. 2015, 71, 3.

[25]  O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, J. Appl. Cryst. 2009, 42, 339.
         | Crossref | GoogleScholarGoogle Scholar |