A Detailed Classification of Three-Centre Two-Electron Bonds
Sharon Priya Gnanasekar A and Elangannan Arunan A BA Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
B Corresponding author. Email: arunan@iisc.ac.in
Australian Journal of Chemistry 73(8) 767-774 https://doi.org/10.1071/CH19557
Submitted: 28 October 2019 Accepted: 25 November 2019 Published: 10 April 2020
Abstract
We evaluate the three-centre two-electron (3c-2e) bonds using atoms in molecules (AIM) and natural bond orbital (NBO) theoretical analyses. They have been classified as ‘open (V)’ or ‘closed (Δ)’, depending on how the three centres were bonded. Herein, we show that they could be classified as V, L, Δ, Y, T and I (linear) arrangements depending on the way the three centres are bonded. These different structures are found in B2H6 (V), CH5+ (V), Me-C2H2+ (L), B3+ (Δ), C3H3+ (Δ), H3+ (Y), 2-norbornyl+ (T), SiH5+ (T), and Al2H7− (I). Our results suggest that CH3Li2+ does not contain a 3c-2e bond according to NBO analysis. Therefore, we propose that 3c-2e bonds are classified more accurately as V, L, Δ, Y, T, or I, based on the electron density topology.
References
[1] K. S. Pitzer, J. Am. Chem. Soc. 1945, 67, 1126.| Crossref | GoogleScholarGoogle Scholar |
[2] F. Scholz, D. Himmel, F. W. Heinemann, P. R. Schleyer, K. Meyer, I. Krossing, Science 2013, 341, 62.
| Crossref | GoogleScholarGoogle Scholar | 23828938PubMed |
[3] W. B. Jensen, J. Chem. Educ. 1980, 57, 637.
| Crossref | GoogleScholarGoogle Scholar |
[4] R. L. DeKock, W. B. Bosma, J. Chem. Educ. 1988, 65, 194.
| Crossref | GoogleScholarGoogle Scholar |
[5] R. Bau, R. G. Teller, S. W. Kirtley, T. F. Koetzle, Acc. Chem. Res. 1979, 12, 176.
| Crossref | GoogleScholarGoogle Scholar |
[6] J. C. Green, M. L. H. Green, G. Parkin, Chem. Commun. 2012, 48, 11481.
| Crossref | GoogleScholarGoogle Scholar |
[7] M. L. H. Green, G. Parkin, in The Chemical Bond III: 100 Years Old and Getting Stronger (Ed. D. M. P. Mingos) 2017, pp. 79–139 (Springer International Publishing: Cham).
[8] S. P. Gnanasekar, E. Arunan, J. Phys. Chem. A 2019, 123, 1168.
| Crossref | GoogleScholarGoogle Scholar | 30407822PubMed |
[9] E. D. Jemmis, J. Chandrasekhar, P. von R. Schleyer, J. Am. Chem. Soc. 1979, 101, 527.
| Crossref | GoogleScholarGoogle Scholar |
[10] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D. 01 2009 (Gaussian Inc.: Wallingford, CT).
[11] T. A. Keith, AIMAll, Version 16.05.18 2016 (TK Gristmill Software: Overland Park, KS).
[12] E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, F. Weinhold, NBO 6.0 2013 (Theoretical Chemistry Institute, University of Wisconsin: Madison, WI).
[13] See p. 716 in: K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules 1979 (Springer Science & Business Media: Berlin).
[14] G. J. Kubas, Metal Dihydrogen and σ-Bond Complexes: Structure, Theory, and Reactivity 2001 (Springer Science & Business Media: Berlin).
[15] N. Yoshikai, S. C. Ammal, E. Nakamura, J. Am. Chem. Soc. 2004, 126, 12941.
| Crossref | GoogleScholarGoogle Scholar | 15469291PubMed |
[16] J. J. Thomson, Lond. Edinb. Dublin Philos. Mag. J. Sci. 1912, 24, 209.
| Crossref | GoogleScholarGoogle Scholar |
[17] M. J. Gaillard, D. S. Gemmell, G. Goldring, I. Levine, W. J. Pietsch, J. C. Poizat, A. J. Ratkowski, J. Remillieux, Z. Vager, B. J. Zabransky, Phys. Rev. A 1978, 17, 1797.
| Crossref | GoogleScholarGoogle Scholar |
[18] R. Dennington, T. A. Keith, J. M. Millam, GaussView 5 2009 (Semichem Inc.: Shawnee Mission, KS).
[19] E. D. Glendening, S. J. Wright, F. Weinhold, J. Comput. Chem. 2019, 40, 2028.
| Crossref | GoogleScholarGoogle Scholar | 31077408PubMed |
[20] E. D. Glendening, C. R. Landis, F. Weinhold, J. Am. Chem. Soc. 2019, 141, 4156.
| Crossref | GoogleScholarGoogle Scholar | 30742414PubMed |
[21] N. B. Okulik, N. M. Peruchena, A. H. Jubert, J. Phys. Chem. A 2006, 110, 9974.
| Crossref | GoogleScholarGoogle Scholar | 16898702PubMed |
[22] R. F. W. Bader, S. G. Anderson, A. J. Duke, J. Am. Chem. Soc. 1979, 101, 1389.
| Crossref | GoogleScholarGoogle Scholar |
[23] N. H. Werstiuk, H. M. Muchall, J. Phys. Chem. A 2000, 104, 2054.
| Crossref | GoogleScholarGoogle Scholar |
[24] R. F. W. Bader, T. S. Slee, D. Cremer, E. Kraka, J. Am. Chem. Soc. 1983, 105, 5061.
| Crossref | GoogleScholarGoogle Scholar |
[25] R. F. W. Bader, Atoms in Molecules: A Quantum Theory, International Series of Monographs on Chemistry 1994 (Oxford University Press: Oxford).
[26] F. Weinhold, J. Comput. Chem. 2012, 33, 2440.
| Crossref | GoogleScholarGoogle Scholar | 22837020PubMed |
[27] R. S. Mulliken, J. Am. Chem. Soc. 1955, 77, 887.
| Crossref | GoogleScholarGoogle Scholar |
[28] J. L. Atwood, D. C. Hrncir, R. D. Rogers, J. A. K. Howard, J. Am. Chem. Soc. 1981, 103, 6787.
| Crossref | GoogleScholarGoogle Scholar |
[29] D. B. DuPré, J. Phys. Chem. A 2005, 109, 622.
| Crossref | GoogleScholarGoogle Scholar | 16833388PubMed |