Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

Classification of Spatially Confined Reactions and the Electrochemical Applications of Molybdenum-Based Nanocomposites

Sitong Guo A , Wen Tan A , Jiyicheng Qiu A , Jinlong Du A , Zhanxu Yang A B and Xiaorong Wang https://orcid.org/0000-0002-2099-9769 A B
+ Author Affiliations
- Author Affiliations

A College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, China.

B Corresponding authors. Email: zhanxuy@126.com; wangxiaorong@lnpu.edu.cn




Sitong Guo received her bachelor’s degree in applied chemistry from Liaoning Shihua University (China), and she is presently a third-year Master’s student in the research group of Professor Zhanxu Yang. Her research is focused on the preparation of MoS2 nanotube-based composites and their application in advanced electrocatalysts of hydrogen and oxygen evolution reaction.



Wen Tan obtained his bachelor’s degree from Liaoning Shihua University (China), and he is currently a third-year Master’s student in the research group of Professor Zhanxu Yang. His research interests cover the exploration of advanced electrocatalysts for hydrogen evolution, controllable fabrication of high-performance carbon-based electrode materials, and the development of technology for electrochemical energy storage devices.



Jiyicheng Qiu is a chemical engineer, with a Master’s degree in applied chemistry from Liaoning Shihua University in China. His research is focused on the preparation and application of MoO3-based composites.



Jinlong Du completed a Master’s degree in chemical engineering and technology at Liaoning Shihua University in China. His current research involves the preparation and application of MoS2-based composites. He is presently working as a chemical engineer in China.



Professor Zhanxu Yang is the director of College of Chemistry, Chemical Engineering and Environmental Engineering in Liaoning Shihua University. He received his Ph.D. from Beijing University of Chemical Technology in 2009. As Principal Investigator in the field of electrochemistry, he has actively led and participated in the research of energy storage materials, catalytic materials, and petroleum processing aids. He has authored or co-authored over 50 papers in peer-reviewed journals and has been an invited speaker at national and international meetings on related fields. His research interest is focused on the development of energy storage and catalytic materials.



Dr Xiaorong Wang obtained her bachelor’s and master’s degrees from Beijing Normal University (China), and completed her Ph.D. at Département de chimie of Université de Sherbrooke (Canada). She is currently an associate professor in Liaoning Shihua University. Her current research involves quantum chemical computation, dynamic simulation, functional polymers, and luminescent materials.

Australian Journal of Chemistry 73(7) 587-600 https://doi.org/10.1071/CH19505
Submitted: 9 October 2019  Accepted: 21 January 2020   Published: 25 March 2020

Abstract

As a popular material synthesis method, spatially confined reactions have been gradually recognised for their excellent performance in the field of current materials synthesis. In recent years, molybdenum-based catalysts have gradually gained recognition due to high natural reserves of Mo, its low cost, and many other advantages, and they have wide applications in the area of functional materials, especially in topical areas such as batteries and electrocatalysts. In this context, spatially confined reactions have become widely to obtain various types of molybdenum-based electrode materials and electrocatalysts which result in an excellent morphology, structure, and performance. In this review, the concept of a spatially confined reaction system and the electrochemical application (electrode materials and electrocatalyst) of molybdenum-based materials synthesised in this way are comprehensively discussed. The current problems and future development and application of molybdenum-based materials are also discussed in this review.


References

[1]  F. H. Vernhoff, P. Labourt-Ibarre, G. D. Ballal, Chem. Eng. Sci. 1981, 36, 1713.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  J. Liu, J. S. Chen, X. Wei, X. W. Lou, X. W. Liu, Adv. Mater. 2011, 23, 998.
         | Crossref | GoogleScholarGoogle Scholar | 21341313PubMed |

[3]  J. Qu, Y. Yan, Y. X. Yin, Y. G. Guo, W. G. Song, ACS Appl. Mater. Interfaces 2013, 5, 5777.
         | Crossref | GoogleScholarGoogle Scholar | 23701368PubMed |

[4]  L. Fei, X. Li, W. Bi, Z. Zhuo, W. Wei, L. Sun, W. Lu, X. Wu, K. Xie, C. Wu, H. L. W. Chan, Y. Wang, Adv. Mater. 2015, 27, 5936.
         | Crossref | GoogleScholarGoogle Scholar | 26310671PubMed |

[5]  Y. Sun, J. Zhu, L. Bai, Q. Li, X. Zhang, W. Tong, Y. Xie, Inorg. Chem. Front. 2014, 1, 58.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  K. Urita, N. Ide, K. Isobe, H. Furukawa, I. Moriguchi, ACS Nano 2014, 8, 3614.
         | Crossref | GoogleScholarGoogle Scholar | 24646017PubMed |

[7]  Y. Jiang, Y. Li, W. Sun, W. Huang, J. Liu, B. Xu, C. Jin, T. Ma, C. Wu, M. Yan, Energy Environ. Sci. 2015, 8, 1471.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  S. H. Lee, S. H. Yu, J. E. Lee, A. Jin, D. J. Lee, N. Lee, H. Jo, K. Shin, T.-Y. Ahn, Y.-W. Kim, H. Choe, Y.-E. Sung, T. Hyeon, Nano Lett. 2013, 13, 4249.
         | Crossref | GoogleScholarGoogle Scholar | 23902532PubMed |

[9]  A. Jahel, C. M. Ghimbeu, L. Monconduit, C. Vix-Guterl, Adv. Energy Mater. 2014, 4, 1400025.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  X. Zheng, J. Xu, K. Yan, H. Wang, Z. Wang, S. Yang, Chem. Mater. 2014, 26, 2344.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  J. Zhou, J. Qin, X. Zhang, C. Shi, E. Liu, J. Li, N. Zhao, C. He, ACS Nano 2015, 9, 3837.
         | Crossref | GoogleScholarGoogle Scholar | 25791011PubMed |

[12]  C. Lei, F. Han, Q. Sun, W. C. Li, A. H. Lu, Chem. – Eur. J. 2014, 20, 139.
         | Crossref | GoogleScholarGoogle Scholar | 24273057PubMed |

[13]  F. Barroso-Bujans, F. Fernandez-Alonso, S. Cerveny, S. Arrese-Igor, A. Alegría, J. Colmenero, Macromolecules 2012, 45, 3137.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  J. Xu, Q. Yu, L. Guan, J. Mater. Chem. A Mater. Energy Sustain. 2015, 3, 7093.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  Y. Zhao, H. Sun, L. M. Liu, R. Zong, H. Cao, Z. Zhang, X. Wang, J. Luo, J. Zhu, Small 2015, 11, 1512.
         | Crossref | GoogleScholarGoogle Scholar | 25504858PubMed |

[16]  X. Fan, C. Yu, J. Yang, Z. Ling, C. Hu, M. Zhang, J. Qiu, Adv. Energy Mater. 2015, 5, 1401761.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  Y. Liu, X. Zhou, T. Ding, C. Wang, Q. Yang, Nanoscale 2015, 7, 18004.
         | Crossref | GoogleScholarGoogle Scholar | 26377858PubMed |

[18]  G. Cavallaro, G. Lazzara, S. Milioto, F. Parisi, V. Evtugyn, E. Rozhina, R. Fakhrullin, ACS Appl. Mater. Interfaces 2018, 10, 8265.
         | Crossref | GoogleScholarGoogle Scholar | 29430922PubMed |

[19]  Q. Q. Yang, L. F. Gao, Z. Y. Zhu, C. X. Hu, Z. P. Huang, R. T. Liu, Q. Wang, F. Gao, H.-L. Zhang, Electrochim. Acta 2018, 260, 204.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  M. Seredych, J. C. Idrobo, T. J. Bandosz, J. Mater. Chem. A Mater. Energy Sustain. 2013, 1, 7059.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  Y. Yao, Q. Fu, Y. Y. Zhang, X. Weng, H. Li, M. Chen, L. Jin, A. Dong, R. Mu, P. Jiang, L. Liu, H. Bluhm, Z. Liu, S. B. Zhang, X. Bao, Proc. Natl. Acad. Sci. USA 2014, 111, 17023.
         | Crossref | GoogleScholarGoogle Scholar | 25404332PubMed |

[22]  G. Liu, L. Yu, Y. Zhu, X. Guo, Y. Zhou, H. Ye, Chin. J. Catal. 2015, 36, 148.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  L. Zhang, T. N. Pham, J. Faria, D. Santhanaraj, T. Sooknoi, Q. Tan, Z. Zhao, D. E. Resasco, ChemSusChem 2016, 9, 736.
         | Crossref | GoogleScholarGoogle Scholar | 26938793PubMed |

[24]  L. Song, J. Shi, J. Lu, C. Lu, Chem. Sci. 2015, 6, 4846.
         | Crossref | GoogleScholarGoogle Scholar | 28717489PubMed |

[25]  N. Zhu, K. Zheng, K. J. Karki, M. Abdellah, Q. Zhu, S. Carlson, D. Haase, K. Žídek, J. Ulstrup, S. E. Canton, T. Pullerits, Q. Chi, Sci. Rep. 2015, 5, 9860.
         | Crossref | GoogleScholarGoogle Scholar | 25996307PubMed |

[26]  G. Li, Z. Lian, W. Wang, D. Zhang, H. Li, Nano Energy 2016, 19, 446.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  L. Li, Q. Chen, Q. Zhang, J. Shi, Y. Li, W. Zhao, J. Shi, Catal. Commun. 2012, 26, 15.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  H. Yu, Y. Yu, J. Liu, P. Ma, Y. Wang, F. Zhang, Z. Fu, J. Mater. Chem. A Mater. Energy Sustain. 2015, 3, 19439.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  C. Tang, H. S. Wang, H. F. Wang, Q. Zhang, G. L. Tian, J. Q. Nie, F. Wei, Adv. Mater. 2015, 27, 4516.
         | Crossref | GoogleScholarGoogle Scholar | 26115530PubMed |

[30]  J. Yang, D. Shen, L. Zhou, W. Li, X. Li, C. Yao, R. Wang, A. M. El-Toni, F. Zhang, D. Zhao, Chem. Mater. 2013, 25, 3030.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  X. Pan, X. Bao, Chem. Commun. 2008, 47, 6271.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  See pp. 5–23 in: P. Serp, J. L. Figueiredo, Carbon Materials for Catalysis 2009 (John Wiley & Sons: Hoboken, NJ).

[33]  D. Zhou, S. Seraphin, Chem. Phys. Lett. 1994, 222, 233.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  X. Pan, Z. Fan, W. Chen, Y. Ding, H. Luo, X. Bao, Nat. Mater. 2007, 6, 507.
         | Crossref | GoogleScholarGoogle Scholar | 17515914PubMed |

[35]  X. Pan, X. Bao, Acc. Chem. Res. 2011, 44, 553.
         | Crossref | GoogleScholarGoogle Scholar | 21707038PubMed |

[36]  A. N. Khlobystov, ACS Nano 2011, 5, 9306.
         | Crossref | GoogleScholarGoogle Scholar | 22200191PubMed |

[37]  Z. Chen, Z. Guan, M. Li, Q. Yang, C. Li, Angew. Chem. Int. Ed. 2011, 50, 4913.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  T. Cui, J. Dong, X. Pan, T. Yu, Q. Fu, X. Bao, J. Energy Chem. 2019, 28, 123.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  H. Zhu, C. Xiao, H. Cheng, F. Grote, X. Zhang, T. Yao, Z. Li, C. Wang, S. Wei, Y. Lei, Nat. Commun. 2014, 5, 3960.
         | Crossref | GoogleScholarGoogle Scholar | 24888747PubMed |

[40]  C. Yu, X. Han, Z. Liu, C. Zhao, H. Huang, J. Yang, Y. Niu, J. Qiu, Carbon 2018, 126, 437.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  L. Sheng, S. Liang, T. Wei, J. Chang, Z. Jiang, L. Zhang, Q. Zhou, J. Zhou, L. Jiang, Z. Fan, Energy Storage Materials 2018, 12, 94.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  J. Guo, X. Li, Y. Sun, Q. Liu, Z. Quan, X. Zhang, J. Solid State Chem. 2018, 262, 181.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  R. Tian, S. Zhang, M. Li, Y. Zhou, B. Lu, D. Yan, M. Wei, D. G. Evans, X. Duan, Adv. Funct. Mater. 2015, 25, 5006.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  J. Zhang, Z. Yang, X. Wang, T. Ren, Q. Qiao, RSC Adv. 2016, 6, 84847.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  J. Zhang, Z. Yang, J. Qiu, H. W. Lee, J. Mater. Chem. A Mater. Energy Sustain. 2016, 4, 5802.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  J. Sun, H. Liu, X. Chen, D. G. Evans, W. Yang, X. Duan, Chem. Commun. 2012, 48, 8126.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  J. Sun, H. Liu, X. Chen, D. G. Evans, W. Yang, X. Duan, Adv. Mater. 2013, 25, 1125.
         | Crossref | GoogleScholarGoogle Scholar | 23161553PubMed |

[48]  F. J. Di Salvo, G. W. Hull, L. H. Schwartz, J. M. Voorhoeve, J. V. Waszczak, J. Chem. Phys. 1973, 59, 1922.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  R. Trujillano, M. J. Holgado, F. Pigazo, V. Rives, Physica B 2006, 373, 267.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  W. Ding, Z. Wei, S. Chen, X. Qi, T. Yang, J. Hu, D. Wang, L. J. Wan, S. F. Alvi, L. Li, Angew. Chem. Int. Ed. 2013, 52, 11755.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  J. Guo, Y. Cheng, Z. Xiang, ACS Sustainable Chem. Eng. 2017, 5, 7871.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  J. Xu, Q. Yu, L. Guan, J. Mater. Chem. A Mater. Energy Sustain. 2015, 3, 7093.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  X. Liu, X. Zhang, Z. Chen, X. Tan, Ceram. Int. 2013, 39, 5453.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  N. Wu, H. R. Yao, Y. X. Yin, Y. G. Guo, J. Mater. Chem. A Mater. Energy Sustain. 2015, 3, 24221.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  Y. Lin, Y. L. Ying, R. Gao, Y. T. Long, Chem. – Eur. J. 2018, 24, 13064.
         | Crossref | GoogleScholarGoogle Scholar | 29577444PubMed |

[56]  J. Knossalla, P. Paciok, D. Göhl, D. Jalalpoor, E. Pizzutilo, A. M. Mingers, M. Heggen, R. E. Dunin-Borkowski, K. J. J. Mayrhofer, F. Schüth, M. Ledendecker, J. Am. Chem. Soc. 2018, 140, 15684.
         | Crossref | GoogleScholarGoogle Scholar | 30339389PubMed |

[57]  P. Gao, L. Hu, N. Liu, Z. Yang, X. Lou, T. Zhai, H. Li, F. Xia, Adv. Mater. 2016, 28, 460.
         | Crossref | GoogleScholarGoogle Scholar | 26765675PubMed |

[58]  X. Li, J. Liang, Z. Hou, W. Zhang, Y. Wang, Y. Zhu, Y. Qian, Adv. Funct. Mater. 2015, 25, 5229.
         | Crossref | GoogleScholarGoogle Scholar |

[59]  X. Zhang, R. Zhao, Q. Wu, W. Li, C. Shen, L. Ni, H. Yan, G. Diao, M. Chen, ACS Nano 2017, 11, 8429.
         | Crossref | GoogleScholarGoogle Scholar | 28742319PubMed |

[60]  Y. L. Ding, C. Wu, P. Kopold, P. A. van Aken, J. Maier, Y. Yu, Small 2015, 11, 6026.
         | Crossref | GoogleScholarGoogle Scholar | 26456169PubMed |

[61]  J. Li, K. Zhao, Y. Yu, L. Zhang, Adv. Funct. Mater. 2015, 25, 2189.
         | Crossref | GoogleScholarGoogle Scholar |

[62]  C. Wang, Z. Chen, H. Jin, C. Cao, J. Li, Z. Mi, J. Mater. Chem. A Mater. Energy Sustain. 2014, 2, 17820.
         | Crossref | GoogleScholarGoogle Scholar |

[63]  X. Chen, S. S. Mao, Chem. Rev. 2007, 107, 2891.
         | Crossref | GoogleScholarGoogle Scholar | 17590053PubMed |

[64]  F. Lei, L. Zhang, Y. Sun, L. Liang, K. Liu, J. Xu, Q. Zhang, B. Pan, Y. Luo, Y. Xie, Angew. Chem. Int. Ed. 2015, 54, 9266.
         | Crossref | GoogleScholarGoogle Scholar |

[65]  H. L. Qin, D. Wang, Z. L. Huang, D. M. Wu, Z. C. Zeng, B. Ren, K. Xu, J. Jin, J. Am. Chem. Soc. 2013, 135, 12544.
         | Crossref | GoogleScholarGoogle Scholar | 23941113PubMed |

[66]  J. Niu, D. Wang, H. Qin, X. Xiong, P. Tan, Y. Li, R. Liu, X. Lu, J. Wu, T. Zhang, W. Ni, J. Jin, Nat. Commun. 2014, 5, 3313.
         | Crossref | GoogleScholarGoogle Scholar | 24531189PubMed |

[67]  A. Khare, A. W. Wills, L. M. Ammerman, D. J. Norris, E. S. Aydil, Chem. Commun. 2011, 47, 11721.
         | Crossref | GoogleScholarGoogle Scholar |

[68]  H. P. Komsa, A. V. Krasheninnikov, Phys. Rev. B 2012, 86, 241201.
         | Crossref | GoogleScholarGoogle Scholar |

[69]  M. Hamer, E. Tóvári, M. Zhu, M. D. Thompson, A. Mayorov, J. Prance, Y. Lee, R. P. Haley, Z. R. Kudrynskyi, A. Patanè, D. Terry, Z. D. Kovalyuk, K. Ensslin, A. V. Kretinin, A. Geim, R. Gorbachev, Nano Lett. 2018, 18, 3950.
         | Crossref | GoogleScholarGoogle Scholar | 29763556PubMed |

[70]  C. Ma, H. Zhu, J. Zhou, Z. Cui, T. Liu, Y. Wang, Y. Wang, Z. Zou, Dalton Trans. 2017, 46, 3877.
         | Crossref | GoogleScholarGoogle Scholar | 28262867PubMed |

[71]  S. Zhu, Y. Song, J. Wang, H. Wan, Y. Zhang, Y. Ning, B. Yang, Nano Today 2017, 13, 10.
         | Crossref | GoogleScholarGoogle Scholar |

[72]  A. Favron, E. Gaufrès, F. Fossard, A. L. Phaneuf-L’Heureux, N. Y. Tang, P. L. Lévesque, A. Loiseau, R. Leonelli, S. Francoeur, R. Marte, Nat. Mater. 2015, 14, 826.
         | Crossref | GoogleScholarGoogle Scholar | 26006004PubMed |

[73]  R. H. Hembree, T. Vazhappilly, D. A. Micha, J. Chem. Phys. 2017, 147, 224703.
         | Crossref | GoogleScholarGoogle Scholar | 29246045PubMed |

[74]  J. Quereda, R. Biele, G. Rubio‐Bollinger, N. Agraït, R. D’Agosta, A. Castellanos‐Gomez, Adv. Opt. Mater. 2016, 4, 1939.
         | Crossref | GoogleScholarGoogle Scholar |

[75]  M. C. Beard, J. M. Luther, O. E. Semonin, A. J. Nozik, Acc. Chem. Res. 2013, 46, 1252.
         | Crossref | GoogleScholarGoogle Scholar | 23113604PubMed |

[76]  G. W. Mudd, S. A. Svatek, T. Ren, A. Patanè, O. Makarovsky, L. Eaves, P. H. Beton, Z. D. Kovalyuk, G. V. Lashkarev, Z. R. Kudrynskyi, A. I. Dmitriev, Adv. Mater. 2013, 25, 5714.
         | Crossref | GoogleScholarGoogle Scholar | 23966225PubMed |

[77]  T. Lin, X. Cong, M. L. Lin, X. L. Liu, P. H. Tan, Nanoscale 2018, 10, 8704.
         | Crossref | GoogleScholarGoogle Scholar | 29701212PubMed |

[78]  X. Xiao, S. A. Yang, Z. Liu, H. Li, G. Zhou, Sci. Rep. 2015, 5, 7898.
         | Crossref | GoogleScholarGoogle Scholar | 25600392PubMed |

[79]  M. Thambidurai, N. Muthukumarasamy, S. Agilan, N. Murugan, S. Vasantha, R. Balasundaraprabhu, T. S. Senthil, J. Mater. Sci. 2010, 45, 3254.
         | Crossref | GoogleScholarGoogle Scholar |

[80]  G. Xu, C. M. Torres, E. B. Song, J. Tang, J. Bai, X. Duan, Y. Zhang, K. L. Wang, Nano Lett. 2010, 10, 4590.
         | Crossref | GoogleScholarGoogle Scholar | 20939609PubMed |

[81]  J. Jiang, L. Sun, B. Gao, Z. Wu, W. Lu, J. Yang, Y. Luo, J. Appl. Phys. 2010, 108, 094303.
         | Crossref | GoogleScholarGoogle Scholar |

[82]  N. S. Arul, D. Mangalaraj, P. C. Chen, N. Ponpandian, C. Viswanathan, Mater. Lett. 2011, 65, 2635.
         | Crossref | GoogleScholarGoogle Scholar |

[83]  Y. Tian, M. R. Sakr, J. M. Kinder, D. Liang, M. J. MacDonald, R. L. J. Qiu, H.-J. Gao, X. P. A. Gao, Nano Lett. 2012, 12, 6492.
         | Crossref | GoogleScholarGoogle Scholar | 23167670PubMed |

[84]  H. Overweg, P. Rickhaus, M. Eich, Y. Lee, R. Pisoni, K. Watanabe, T. Taniguchi, T. Ihn, K. Ensslin, New J. Phys. 2018, 20, 013013.
         | Crossref | GoogleScholarGoogle Scholar |

[85]  S. S. Kushvaha, C. Ramesh, P. Tyagi, A. K. Shukla, B. S. Yadav, N. Dilawar, K. K. Maurya, M. S. Kumar, J. Alloys Compd. 2017, 703, 466.
         | Crossref | GoogleScholarGoogle Scholar |

[86]  A. L. Kaledin, D. Kong, K. Wu, T. Lian, D. G. Musaev, J. Phys. Chem. C 2018, 122, 18742.
         | Crossref | GoogleScholarGoogle Scholar |

[87]  M. A. H. Muhammed, M. Lamers, V. Baumann, P. Dey, A. J. Blanch, I. Polishchuk, X.-T. Kong, D. Levy, A. S. Urban, A. O. Govorov, B. Pokroy, J. Rodríguez-Fernández, J. Feldmann, J. Phys. Chem. C 2018, 122, 6348.
         | Crossref | GoogleScholarGoogle Scholar |

[88]  C. Xin, J. Zheng, Y. Su, S. Li, B. Zhang, Y. Feng, F. Pan, J. Phys. Chem. C 2016, 120, 22663.
         | Crossref | GoogleScholarGoogle Scholar |

[89]  X. Xue, W. Ji, Z. Mao, H. Mao, Y. Wang, X. Wang, W. Ruan, B. Zhao, J. R. Lombardi, J. Phys. Chem. C 2012, 116, 8792.
         | Crossref | GoogleScholarGoogle Scholar |

[90]  J. Zhao, M. A. Holmes, F. E. Osterloh, ACS Nano 2013, 7, 4316.
         | Crossref | GoogleScholarGoogle Scholar | 23590186PubMed |

[91]  J. Qiu, Z. Yang, Y. Li, J. Mater. Chem. A Mater. Energy Sustain. 2015, 3, 24245.
         | Crossref | GoogleScholarGoogle Scholar |

[92]  J. Du, Z. Yang, X. Wang, C. Qi, Y. Li, W. Mao, H. Qiao, Z. Yu, T. Ren, Q. Qiao, Electrochim. Acta 2017, 250, 238.
         | Crossref | GoogleScholarGoogle Scholar |

[93]  C. Xie, Y. Wang, K. Hu, L. Tao, X. Huang, J. Huo, S. Wang, J. Mater. Chem. A Mater. Energy Sustain. 2017, 5, 87.
         | Crossref | GoogleScholarGoogle Scholar |

[94]  H. Jiang, D. Ren, H. Wang, Y. Hu, S. Guo, H. Yuan, P. Hu, L. Zhang, C. Li, Adv. Mater. 2015, 27, 3687.
         | Crossref | GoogleScholarGoogle Scholar | 25989160PubMed |

[95]  Y. Luo, X. Li, X. Cai, X. Zou, F. Kang, H. M. Cheng, B. Liu, ACS Nano 2018, 12, 4565.
         | Crossref | GoogleScholarGoogle Scholar | 29688695PubMed |

[96]  Z. Chen, K. Leng, X. Zhao, S. Malkhandi, W. Tang, B. Tian, L. Dong, L. Zheng, M. Lin, B. S. Yeo, K. P. Loh, Nat. Commun. 2017, 8, 14548.
         | Crossref | GoogleScholarGoogle Scholar | 28230105PubMed |

[97]  M. Li, S. Yu, Z. Chen, Z. Wang, F. Lv, B. Nan, Y. Zhu, Y. Shi, W. Wang, S. Wu, H. Liu, Y. Tang, Z. Lu, Inorg. Chem. Front. 2017, 4, 289.
         | Crossref | GoogleScholarGoogle Scholar |

[98]  H. B. Wu, B. Y. Xia, L. Yu, X. Y. Yu, X. W. D. Lou, Nat. Commun. 2015, 6, 6512.
         | Crossref | GoogleScholarGoogle Scholar | 25758159PubMed |

[99]  N. S. Alhajri, D. H. Anjum, K. Takanabe, J. Mater. Chem. A Mater. Energy Sustain. 2014, 2, 10548.
         | Crossref | GoogleScholarGoogle Scholar |

[100]  Z. Cheng, Q. Fu, Q. Han, Y. Xiao, Y. Liang, Y. Zhao, L. Qu, Adv. Funct. Mater. 2018, 28, 1705967.
         | Crossref | GoogleScholarGoogle Scholar | 29910700PubMed |

[101]  J. Qiu, Z. Yang, Q. Li, Y. Li, X. Wu, C. Qi, Q. Qiao, J. Mater. Chem. A Mater. Energy Sustain. 2016, 4, 13296.
         | Crossref | GoogleScholarGoogle Scholar |

[102]  Y. Zhu, G. Chen, X. Xu, G. Yang, M. Liu, Z. Shao, ACS Catal. 2017, 7, 3540.
         | Crossref | GoogleScholarGoogle Scholar |

[103]  J. S. Li, S. Zhang, J. Q. Sha, H. Wang, M. Z. Liu, L. X. Kong, G. D. Liu, ACS Appl. Mater. Interfaces 2018, 10, 17140.
         | Crossref | GoogleScholarGoogle Scholar | 29717865PubMed |

[104]  J. Yang, F. Zhang, X. Wang, D. He, G. Wu, Q. Yang, X. Hong, Y. Wu, Y. Li, Angew. Chem. Int. Ed. 2016, 55, 12854.
         | Crossref | GoogleScholarGoogle Scholar |

[105]  H. Tang, K. Dou, C. C. Kaun, Q. Kuang, S. Yang, J. Mater. Chem. A Mater. Energy Sustain. 2014, 2, 360.
         | Crossref | GoogleScholarGoogle Scholar |