Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

Analysis of Nanoconfined Protein Dielectric Signals Using Charged Amino Acid Network Models

Lorenza Pacini A B D , Laetitia Bourgeat A C D , Anatoli Serghei C E and Claire Lesieur https://orcid.org/0000-0001-9594-014X A B E
+ Author Affiliations
- Author Affiliations

A AMPERE, CNRS, University of Lyon, 69622, Lyon, France.

B Institut Rhônalpin des Systèmes Complexes, IXXI-ENS-Lyon, 69007, Lyon, France.

C IMP, CNRS, University of Lyon, 69622, Lyon, France.

D These authors contributed equally to this work.

E Corresponding authors. Email: anatoli.serghei@univ-lyon1.fr; claire.lesieur@ens-lyon.fr

Australian Journal of Chemistry 73(8) 803-812 https://doi.org/10.1071/CH19502
Submitted: 5 October 2019  Accepted: 27 February 2020   Published: 19 May 2020

Journal Compilation © CSIRO 2020 Open Access CC BY

Abstract

Protein slow motions involving collective molecular fluctuations on the timescale of microseconds to seconds are difficult to measure and not well understood despite being essential to sustain protein folding and protein function. Broadband dielectric spectroscopy (BDS) is one of the most powerful experimental techniques to monitor, over a broad frequency and temperature range, the molecular dynamics of soft matter through the orientational polarisation of permanent dipole moments that are generated by the chemical structure and morphological organisation of matter. Its typical frequency range goes from 107 Hz down to 10−3 Hz, being thus suitable for investigations on slow motions in proteins. Moreover, BDS has the advantage of providing direct experimental access to molecular fluctuations taking place on different length-scales, from local to cooperative dipolar motions. The unfolding of the cholera toxin B pentamer (CtxB5) after thermal treatment for 3 h at 80°C is investigated by BDS under nanoconfined and dehydrated conditions. From the X-ray structure of the toxin pentamer, network-based models are used to infer the toxin dipoles present in the native state and to compute their stability and dielectric properties. Network analyses highlight three domains with distinct dielectric and stability properties that support a model where the toxin unfolds into three conformations after the treatment at 80°C. This novel integrative approach offers some perspective into the investigation of the relation between local perturbations (e.g. mutation, thermal treatment) and larger scale protein conformational changes. It might help ranking protein sequence variants according to their respective scale of dynamics perturbations.


References

[1]  K. Lindorff-Larsen, S. Piana, R. O. Dror, D. E. Shaw, Science 2011, 334, 517.
         | Crossref | GoogleScholarGoogle Scholar | 22034434PubMed |

[2]  L. Vuillon, C. Lesieur, Curr. Opin. Struct. Biol. 2015, 31, 1.
         | Crossref | GoogleScholarGoogle Scholar | 25791607PubMed |

[3]  V. Munoz, M. Cerminara, Biochem. J. 2016, 473, 2545.
         | Crossref | GoogleScholarGoogle Scholar | 27574021PubMed |

[4]  T. R. Barends, L. Foucar, A. Ardevol, K. Nass, A. Aquila, S. Botha, R. B. Doak, K. Falahati, E. Hartmann, M. Hilpert, M. Heinz, M. C. Hoffmann, J. Köfinger, J. E. Koglin, G. Kovacsova, M. Liang, D. Milathianaki, H. T. Lemke, J. Reinstein, C. M. Roome, R. L. Shoeman, G. J. Williams, I. Burghardt, G. Hummer, S. Boutet, I. Schlichting, Science 2015, 350, 445.
         | Crossref | GoogleScholarGoogle Scholar | 26359336PubMed |

[5]  M. Levantino, G. Schiro, H. T. Lemke, G. Cottone, J. M. Glownia, D. Zhu, M. Chollet, H. Ihee, A. Cupane, M. Cammarata, Nat. Commun. 2015, 6, 6772.
         | Crossref | GoogleScholarGoogle Scholar | 25832715PubMed |

[6]  E. Mizohata, T. Nakane, Y. Fukuda, E. Nango, S. Iwata, Biophys. Rev. 2018, 10, 209.
         | Crossref | GoogleScholarGoogle Scholar | 29196935PubMed |

[7]  J. R. Stagno, Y. Liu, Y. R. Bhandari, C. E. Conrad, S. Panja, M. Swain, L. Fan, G. Nelson, C. Li, D. R. Wendel, T. A. White, J. D. Coe, M. O. Wiedorn, J. Knoska, D. Oberthuer, R. A. Tuckey, P. Yu, M. Dyba, S. G. Tarasov, U. Weierstall, T. D. Grant, C. D. Schwieters, J. Zhang, A. R. Ferré-D’Amaré, P. Fromme, D. E. Draper, M. Liang, M. S. Hunter, S. Boutet, K. Tan, X. Zuo, X. Ji, A. Barty, N. A. Zatsepin, H. N. Chapman, J. C. H. Spence, S. A. Woodson, Y.-X. Wang, Nature 2017, 541, 242.
         | Crossref | GoogleScholarGoogle Scholar | 27841871PubMed |

[8]  J. Herbst, K. Heyne, R. Diller, Science 2002, 297, 822.
         | Crossref | GoogleScholarGoogle Scholar | 12161649PubMed |

[9]  C. Kolano, J. Helbing, M. Kozinski, W. Sander, P. Hamm, Nature 2006, 444, 469.
         | Crossref | GoogleScholarGoogle Scholar | 17122853PubMed |

[10]  Y. Mizutani, T. Kitagawa, Chem. Rec. 2001, 1, 258.
         | Crossref | GoogleScholarGoogle Scholar | 11895123PubMed |

[11]  C. Fang, R. R. Frontiera, R. Tran, R. A. Mathies, Nature 2009, 462, 200.
         | Crossref | GoogleScholarGoogle Scholar | 19907490PubMed |

[12]  R. Schneider, M. Blackledge, M. R. Jensen, Curr. Opin. Struct. Biol. 2019, 54, 10.
         | Crossref | GoogleScholarGoogle Scholar | 30316104PubMed |

[13]  E. W. Findsen, T. W. Scott, M. R. Chance, J. M. Friedman, M. R. Ondrias, J. Am. Chem. Soc. 1985, 107, 3355.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  C. Lesieur, K. Schulten, Curr. Opin. Struct. Biol. 2015, 31, v.
         | Crossref | GoogleScholarGoogle Scholar | 26055121PubMed |

[15]  J. R. Perilla, B. C. Goh, C. K. Cassidy, B. Liu, R. C. Bernardi, T. Rudack, H. Yu, Z. Wu, K. Schulten, Curr. Opin. Struct. Biol. 2015, 31, 64.
         | Crossref | GoogleScholarGoogle Scholar | 25845770PubMed |

[16]  G. R. Heath, S. Scheuring, Nat. Commun. 2018, 9, 4983.
         | Crossref | GoogleScholarGoogle Scholar | 30478320PubMed |

[17]  B. Hellenkamp, P. Wortmann, F. Kandzia, M. Zacharias, T. Hugel, Nat. Methods 2017, 14, 174.
         | Crossref | GoogleScholarGoogle Scholar | 27918541PubMed |

[18]  A. Soranno, A. Holla, F. Dingfelder, D. Nettels, D. E. Makarov, B. Schuler, Proc. Natl. Acad. Sci. USA 2017, 114, E1833.
         | Crossref | GoogleScholarGoogle Scholar | 28223518PubMed |

[19]  D. M. Leitner, T. Yamato, Mapping Energy Transport Networks in Proteins, Vol. 31 2018 (Wiley Online Library: Hoboken, NJ).

[20]  J. Liu, R. Nussinov, PLOS Comput. Biol. 2016, 12, e1004966.
         | Crossref | GoogleScholarGoogle Scholar | 27814363PubMed |

[21]  A. N. Naganathan, Curr. Opin. Struct. Biol. 2019, 54, 1.
         | Crossref | GoogleScholarGoogle Scholar | 30268910PubMed |

[22]  L. Di Paola, A. Giuliani, Curr. Opin. Struct. Biol. 2015, 31, 43.
         | Crossref | GoogleScholarGoogle Scholar | 25796032PubMed |

[23]  C.-B. Li, H. Yang, T. Komatsuzaki, Proc. Natl. Acad. Sci. USA 2008, 105, 536.
         | Crossref | GoogleScholarGoogle Scholar | 18178627PubMed |

[24]  M. Achoch, R. Dorantes-Gilardi, C. Wymant, G. Feverati, K. Salamatian, L. Vuillon, C. Lesieur, Phys. Chem. Chem. Phys. 2016, 18, 13770.
         | Crossref | GoogleScholarGoogle Scholar | 26688116PubMed |

[25]  A. Gheeraert, L. Pacini, V. S. Batista, L. Vuillon, C. Lesieur, I. Rivalta, J. Phys. Chem. B 2019, 123, 3452.
         | Crossref | GoogleScholarGoogle Scholar | 30943726PubMed |

[26]  E. G. Marklund, J. L. Benesch, Curr. Opin. Struct. Biol. 2019, 54, 50.
         | Crossref | GoogleScholarGoogle Scholar | 30743182PubMed |

[27]  M. T. Degiacomi, Structure 2019, 27, 1034.
         | Crossref | GoogleScholarGoogle Scholar | 31031199PubMed |

[28]  A. J. Pak, G. A. Voth, Curr. Opin. Struct. Biol. 2018, 52, 119.
         | Crossref | GoogleScholarGoogle Scholar | 30508766PubMed |

[29]  H. Van den Bedem, J. S. Fraser, Nat. Methods 2015, 12, 307.
         | Crossref | GoogleScholarGoogle Scholar | 25825836PubMed |

[30]  M. T. Degiacomi, I. Iacovache, L. Pernot, M. Chami, M. Kudryashev, H. Stahlberg, F. G. van der Goot, M. Dal Peraro, Nat. Chem. Biol. 2013, 9, 623.
         | Crossref | GoogleScholarGoogle Scholar | 23912165PubMed |

[31]  C. M. Boyd, D. Bubeck, Curr. Opin. Struct. Biol. 2018, 52, 41.
         | Crossref | GoogleScholarGoogle Scholar | 30125772PubMed |

[32]  E. S. Parsons, G. J. Stanley, A. L. Pyne, A. W. Hodel, A. P. Nievergelt, A. Menny, A. R. Yon, A. Rowley, R. P. Richter, G. E. Fantner, D. Bubeck, B. W. Hoogenboom, Nat. Commun. 2019, 10, 2066.
         | Crossref | GoogleScholarGoogle Scholar | 31061395PubMed |

[33]  G. Schiro, A. Cupane, E. Vitrano, F. Bruni, J. Phys. Chem. B 2009, 113, 9606.
         | Crossref | GoogleScholarGoogle Scholar | 19537774PubMed |

[34]  H. Jansson, R. Bergman, J. Swenson, J. Phys. Chem. B 2005, 109, 24134.
         | Crossref | GoogleScholarGoogle Scholar | 16375405PubMed |

[35]  H. Frauenfelder, G. Chen, J. Berendzen, P. W. Fenimore, H. Jansson, B. H. McMahon, I. R. Stroe, J. Swenson, R. D. Young, Proc. Natl. Acad. Sci. USA 2009, 106, 5129.
         | Crossref | GoogleScholarGoogle Scholar | 19251640PubMed |

[36]  S. Khodadadi, S. Pawlus, A. P. Sokolov, J. Phys. Chem. B 2008, 112, 14273.
         | Crossref | GoogleScholarGoogle Scholar | 18942780PubMed |

[37]  L. Bourgeat, A. Serghei, C. Lesieur, Sci. Rep. 2019, 9, 17988.
         | Crossref | GoogleScholarGoogle Scholar | 31784681PubMed |

[38]  A. Serghei, W. Zhao, D. Miranda, T. P. Russell, Nano Lett. 2013, 13, 577.
         | Crossref | GoogleScholarGoogle Scholar | 23323871PubMed |

[39]  C. Lesieur, M. J. Cliff, R. Carter, R. F. James, A. R. Clarke, T. R. Hirst, J. Biol. Chem. 2002, 277, 16697.
         | Crossref | GoogleScholarGoogle Scholar | 11877421PubMed |

[40]  J. Zrimi, A. Ng Ling, E. Giri-Rachman Arifin, G. Feverati, C. Lesieur, PLoS One 2010, 5, e15347.
         | Crossref | GoogleScholarGoogle Scholar | 21203571PubMed |

[41]  B. Goins, E. Freire, Biochemistry 1988, 27, 2046.
         | Crossref | GoogleScholarGoogle Scholar | 3378043PubMed |

[42]  V. Bhakuni, D. Xie, E. Freire, Biochemistry 1991, 30, 5055.
         | Crossref | GoogleScholarGoogle Scholar | 2036374PubMed |

[43]  B. A. Shoemaker, J. J. Portman, P. G. Wolynes, Proc. Natl. Acad. Sci. USA 2000, 97, 8868.
         | Crossref | GoogleScholarGoogle Scholar | 10908673PubMed |

[44]  K. Luke, M. Perham, P. Wittung-Stafshede, J. Mol. Biol. 2006, 363, 729.
         | Crossref | GoogleScholarGoogle Scholar | 16979655PubMed |

[45]  L. W. Ruddock, J. J. Coen, C. Cheesman, R. B. Freedman, T. R. Hirst, J. Biol. Chem. 1996, 271, 19118.
         | Crossref | GoogleScholarGoogle Scholar | 8702586PubMed |

[46]  L. W. Ruddock, S. P. Ruston, S. M. Kelly, N. C. Price, R. B. Freedman, T. R. Hirst, J. Biol. Chem. 1995, 270, 29953.
         | Crossref | GoogleScholarGoogle Scholar | 8530395PubMed |

[47]  M. N. Blackburn, E. A. Noltmann, Arch. Biochem. Biophys. 1981, 212, 162.
         | Crossref | GoogleScholarGoogle Scholar | 7305401PubMed |

[48]  K. E. Neet, D. E. Timm, Protein Sci. 1994, 3, 2167.
         | Crossref | GoogleScholarGoogle Scholar | 7756976PubMed |

[49]  M. Perham, M. Chen, J. Ma, P. Wittung-Stafshede, J. Am. Chem. Soc. 2005, 127, 16402.
         | Crossref | GoogleScholarGoogle Scholar | 16305220PubMed |

[50]  D. Roberts, R. Keeling, M. Tracka, C. F. Van Der Walle, S. Uddin, J. Warwicker, R. Curtis, Mol. Pharm. 2015, 12, 179.
         | Crossref | GoogleScholarGoogle Scholar | 25389571PubMed |

[51]  M. De Wolf, G. Van Dessel, A. Lagrou, H. J. Hilderson, W. Dierick, Biochim. Biophys. Acta 1985, 832, 165.
         | Crossref | GoogleScholarGoogle Scholar | 4063375PubMed |

[52]  M. J. De Wolf, G. A. Van Dessel, A. R. Lagrou, H. J. Hilderson, W. S. Dierick, Biochemistry 1987, 26, 3799.
         | Crossref | GoogleScholarGoogle Scholar | 3651415PubMed |

[53]  R. Gilardi-Dorantes, L. Bourgeat, L. Pacini, L. Vuillon, C. Lesieur, Phys. Chem. Chem. Phys. 2018, 20, 25399.

[54]  J. S. Viloria, M. F. Allega, M. Lambrughi, E. Papaleo, Sci. Rep. 2017, 7, 1.