Utilizing the Combined Power of Theory and Experiment to Understand Molecular Structure – Solid-State and Gas-Phase Investigation of Morpholine Borane
Aliyu M. Ja’o A , Derek A. Wann B , Conor D. Rankine B , Matthew I. J. Polson A and Sarah L. Masters A CA School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4100, Christchurch 8140, New Zealand.
B Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
C Corresponding author. Email: sarah.masters@canterbury.ac.nz
Australian Journal of Chemistry 73(8) 794-802 https://doi.org/10.1071/CH19492
Submitted: 1 October 2019 Accepted: 25 November 2019 Published: 30 April 2020
Abstract
The molecular structure of morpholine borane complex has been studied in the solid state and gas phase using single-crystal X-ray diffraction, gas electron diffraction, and computational methods. Despite both the solid-state and gas-phase structures adopting the same conformation, a definite decrease in the B–N bond length of the solid-state structure was observed. Other structural variations in the different phases are presented and discussed. To explore the hydrogen storage potential of morpholine borane, the potential energy surface for the uncatalyzed and BH3-catalyzed pathways, as well as the thermochemistry for the hydrogen release reaction, were investigated using accurate quantum chemical methods. It was observed that both the catalyzed and uncatalyzed dehydrogenation pathways are favourable, with a barrier lower than the B–N bond dissociation energy, thus indicating a strong propensity for the complex to release a hydrogen molecule rather than dissociate along the B–N bond axis. A minimal energy requirement for the dehydrogenation reaction has been shown. The reaction is close to thermoneutral as demonstrated by the calculated dehydrogenation reaction energies, thus implying that this complex could demonstrate potential for future on-board hydrogen generation.
References
[1] H. C. Kelly, F. R. Marchelli, M. B. Giusto, Inorg. Chem. 1964, 3, 431.| Crossref | GoogleScholarGoogle Scholar |
[2] S. S. White, H. C. Kelly, J. Am. Chem. Soc. 1968, 90, 2009.
| Crossref | GoogleScholarGoogle Scholar |
[3] S. S. White, H. C. Kelly, J. Am. Chem. Soc. 1970, 92, 4203.
| Crossref | GoogleScholarGoogle Scholar |
[4] T. C. Wolfe, H. C. Kelly, J. Chem. Soc., Perkin Trans. 2 1973, 1948.
| Crossref | GoogleScholarGoogle Scholar |
[5] I. Wilson, H. C. Kelly, Inorg. Chem. 1982, 21, 1622.
| Crossref | GoogleScholarGoogle Scholar |
[6] W. B. Smith, J. Org. Chem. 1984, 49, 3219.
| Crossref | GoogleScholarGoogle Scholar |
[7] R. Tarozaitė, A. Sudavičius, Z. Sukackienė, E. Norkus, Int. J. Surf. Eng. Coatings 2014, 92, 146.
[8] Z. Sukackienė, L. Tamašauskaitė-Tamašiūnaitė, V. Jasulaitienė, A. Balčiūnaitė, A. Naujokaitis, E. Norkus, Thin Solid Films 2017, 636, 425.
| Crossref | GoogleScholarGoogle Scholar |
[9] P. V. Ramachandran, A. S. Kulkarni, Y. Zhao, J. Mei, Chem. Commun. 2016, 11885.
| Crossref | GoogleScholarGoogle Scholar |
[10] H. Can, Ö. Metin, Int. J. Hydrogen Energy 2019, 44, 25642.
[11] C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr. 2016, B72, 171.
[12] J. L. M. Abboud, B. Németh, J. C. Guillemin, P. Burk, A. Adamson, E. R. Nerut, Chem. – Eur. J. 2012, 18, 3981.
| Crossref | GoogleScholarGoogle Scholar |
[13] A. Flores-Parra, N. Farfan, A. I. Hernández-Bautista, L. Fernández-Sánchez, R. Contreras, Tetrahedron 1991, 47, 6903.
| Crossref | GoogleScholarGoogle Scholar |
[14] A. Parkin, I. D. Oswald, S. Parsons, Acta Crystallogr. 2004, B60, 219.
| Crossref | GoogleScholarGoogle Scholar |
[15] J. J. Sloan, R. Kewley, Can. J. Chem. 1969, 47, 3453.
| Crossref | GoogleScholarGoogle Scholar |
[16] O. Indris, W. Stahl, U. Kretschmer, J. Mol. Spectrosc. 1998, 190, 372.
| Crossref | GoogleScholarGoogle Scholar | 9668029PubMed |
[17] K. Vyakaranam, G. Rana, G. R. Chong, S. L. Zheng, B. F. Spielvogel, N. S. Hosmane, Main Group Met. Chem. 2002, 25, 181.
[18] Y. W. Zhang, Z. X. Shen, H. B. Qin, Y. H. Li, K. B. Yu, Chin. J. Chem. 2001, 19, 1130.
| Crossref | GoogleScholarGoogle Scholar |
[19] R. Huertas, J. R. Medina, J. A. Soderquist, S. D. Huang, Acta Crystallogr. 1998, C54, 1645.
[20] C. A. Amezcua, K. E. Bell, H. C. Kelly, Inorg. Chim. Acta 1999, 290, 80.
| Crossref | GoogleScholarGoogle Scholar |
[21] A. Staubitz, A. P. Robertson, I. Manners, Chem. Rev. 2010, 110, 4079.
| Crossref | GoogleScholarGoogle Scholar | 20672860PubMed |
[22] E. Fakioğlu, Y. Yürüm, T. N. Veziroğlu, Int. J. Hydrogen Energy 2004, 29, 1371.
| Crossref | GoogleScholarGoogle Scholar |
[23] T. Umegaki, J.-M. Yan, X.-B. Zhang, H. Shioyama, N. Kuriyama, Q. Xu, Int. J. Hydrogen Energy 2009, 34, 2303.
| Crossref | GoogleScholarGoogle Scholar |
[24] S. J. Grabowski, T. L. Robinson, J. Leszczynski, Chem. Phys. Lett. 2004, 386, 44.
| Crossref | GoogleScholarGoogle Scholar |
[25] S. Trudel, D. F. R. Gilson, Inorg. Chem. 2003, 42, 2814.
| Crossref | GoogleScholarGoogle Scholar | 12691593PubMed |
[26] C. F. Lane, Ammonia-Borane and Related N-B-H Compounds and Materials: Safety Aspects, Properties and Applications (a survey completed as part of a project for the DOE Chemical Hydrogen Storage Center of Excellence, Contract # DE-FC36−05GO15060) 2006. Northern Arizona University, Flagstaff, AZ. Available at: www1.eere.energy.gov/hydrogenandfuelcells/pdfs/nbh_h2_storage_survey.pdf (accessed 25 February 2019; verified 14 April 2020)
[27] F. H. Stephens, V. Pons, R. T. Baker, Dalton Trans. 2007, 2613.
| Crossref | GoogleScholarGoogle Scholar | 17576485PubMed |
[28] M. Bowden, T. Autrey, I. Brown, M. Ryan, Curr. Appl. Phys. 2008, 8, 498.
| Crossref | GoogleScholarGoogle Scholar |
[29] M. T. Nguyen, V. S. Nguyen, M. H. Matus, G. Gopakumar, D. A. Dixon, J. Phys. Chem. A 2007, 111, 679.
| Crossref | GoogleScholarGoogle Scholar | 17249759PubMed |
[30] C. D. Rankine, J. P. F. Nunes, T. Lock Feixas, S. Young, D. A. Wann, J. Phys. Chem. A 2018, 122, 5656.
| Crossref | GoogleScholarGoogle Scholar | 29870255PubMed |
[31] J. P. F. Nunes, Developments Towards Time-Resolved Electron Diffraction: Roadmap to ‘Molecular Movies’ 2017, Ph.D. thesis, University of York.
[32] S. L. Hinchley, H. E. Robertson, K. B. Borisenko, A. R. Turner, B. F. Johnston, D. W. H. Rankin, M. Ahmadian, J. N. Jones, A. H. Cowley, Dalton Trans. 2004, 2469.
| Crossref | GoogleScholarGoogle Scholar | 15303161PubMed |
[33] A. Ross, M. Fink, R. Hilderbrandt, in International Tables for Crystallography (Ed. A. J. C. Wilson) 1992, pp. 245 (Kluwer Academic Publishers: Dordrecht, Netherlands).
[34] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
| Crossref | GoogleScholarGoogle Scholar |
[35] G. M. Sheldrick, Acta Crystallogr. 2015, A71, 3.
[36] G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3.
[37] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision B.01 2010 (Gaussian, Inc.: Wallingford, CT).
[38] M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, Comput. Phys. Commun. 2010, 1477.
| Crossref | GoogleScholarGoogle Scholar |
[39] M. J. Frisch, M. Head-Gordon, J. A. Pople, Chem. Phys. Lett. 1990, 166, 275.
| Crossref | GoogleScholarGoogle Scholar |
[40] W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
| Crossref | GoogleScholarGoogle Scholar |
[41] R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650.
| Crossref | GoogleScholarGoogle Scholar |
[42] M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654.
| Crossref | GoogleScholarGoogle Scholar |
[43] M. J. Frisch, J. A. Pople, J. S. Binkley, J. Chem. Phys. 1984, 80, 3265.
| Crossref | GoogleScholarGoogle Scholar |
[44] V. Sipachev, J. Mol. Struct. THEOCHEM 1985, 121, 143.
| Crossref | GoogleScholarGoogle Scholar |
[45] V. A. Sipachev, Struct. Chem. 2000, 11, 167.
| Crossref | GoogleScholarGoogle Scholar |
[46] V. Sipachev, J. Mol. Struct. 2001, 567–568, 67.
| Crossref | GoogleScholarGoogle Scholar |
[47] C. Peng, H. B. Schlegel, Isr. J. Chem. 1993, 33, 449.
| Crossref | GoogleScholarGoogle Scholar |
[48] C. Gonzalez, H. B. Schlegel, J. Phys. Chem. 1990, 94, 5523.
| Crossref | GoogleScholarGoogle Scholar |
[49] G. P. Wood, L. Radom, G. A. Petersson, E. C. Barnes, M. J. Frisch, J. A. Montgomery, J. Chem. Phys. 2006, 125, 094106.
| Crossref | GoogleScholarGoogle Scholar | 16965071PubMed |
[50] L. A. Curtiss, K. Raghavachari, P. C. Redfern, J. A. Pople, J. Chem. Phys. 1997, 106, 1063.
| Crossref | GoogleScholarGoogle Scholar |
[51] J. A. Montgomery, M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 2000, 112, 6532.
| Crossref | GoogleScholarGoogle Scholar |
[52] M. H. Matus, K. D. Anderson, D. M. Camaioni, S. T. Autrey, D. A. Dixon, J. Phys. Chem. A 2007, 111, 4411.
| Crossref | GoogleScholarGoogle Scholar | 17444621PubMed |
[53] T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
| Crossref | GoogleScholarGoogle Scholar |
[54] D. Feller, K. A. Peterson, J. G. Hill, J. Chem. Phys. 2011, 135, 044102.
| Crossref | GoogleScholarGoogle Scholar | 21806085PubMed |
[55] A. Konovalov, H. Møllendal, J.-C. Guillemin, J. Phys. Chem. A 2009, 113, 8337.
| Crossref | GoogleScholarGoogle Scholar | 19569661PubMed |
[56] T. Banu, K. Sen, D. Ghosh, T. Debnath, A. K. Das, RSC Adv. 2014, 4, 1352.
| Crossref | GoogleScholarGoogle Scholar |
[57] A. M. Ja’o, S. L. Masters, D. A. Wann, C. D. Rankine, J. P. F. Nunes, J.-C. Guillemin, J. Phys. Chem. A 2019, 123, 7104.
| Crossref | GoogleScholarGoogle Scholar | 31314528PubMed |
[58] A. J. Blake, P. T. Brain, H. McNab, J. Miller, C. A. Morrison, S. Parsons, D. W. H. Rankin, H. E. Robertson, B. A. Smart, J. Phys. Chem. 1996, 100, 12280.
| Crossref | GoogleScholarGoogle Scholar |
[59] N. W. Mitzel, D. W. H. Rankin, Dalton Trans. 2003, 3650.
| Crossref | GoogleScholarGoogle Scholar |
[60] S. J. Atkinson, R. Noble-Eddy, S. L. Masters, J. Phys. Chem. A 2016, 120, 2041.
| Crossref | GoogleScholarGoogle Scholar | 26916368PubMed |
[61] S. Aldridge, A. J. Downs, C. Y. Tang, S. Parsons, M. C. Clarke, R. D. L. Johnstone, H. E. Robertson, D. W. H. Rankin, D. A. Wann, J. Am. Chem. Soc. 2009, 131, 2231.
| Crossref | GoogleScholarGoogle Scholar | 19170515PubMed |
[62] D. J. Grant, M. H. Matus, K. D. Anderson, D. M. Camaioni, S. R. Neufeldt, C. F. Lane, D. A. Dixon, J. Phys. Chem. A 2009, 113, 6121.
| Crossref | GoogleScholarGoogle Scholar | 19422181PubMed |
[63] M. Hargittai, I. Hargittai, Phys. Chem. Miner. 1987, 14, 413.
| Crossref | GoogleScholarGoogle Scholar |
[64] R. F. Bader, R. J. Gillespie, P. J. MacDougall, J. Am. Chem. Soc. 1988, 110, 7329.
| Crossref | GoogleScholarGoogle Scholar |
[65] R. J. Gillespie, E. A. Robinson, Angew. Chem. Int. Ed. Engl. 1996, 35, 495.
| Crossref | GoogleScholarGoogle Scholar |
[66] I. Hargittai, D. K. Menyhárd, J. Mol. Struct. 2010, 978, 136.
| Crossref | GoogleScholarGoogle Scholar |
[67] A. Staubitz, A. P. M. Robertson, M. E. Sloan, I. Manners, Chem. Rev. 2010, 110, 4023.
| Crossref | GoogleScholarGoogle Scholar | 20672859PubMed |
[68] M. Hargittai, I. Hargittai, J. Mol. Struct. 1977, 39, 79.
| Crossref | GoogleScholarGoogle Scholar |
[69] R. Noble-Eddy, S. L. Masters, D. W. H. Rankin, D. A. Wann, B. Khater, J. C. Guillemin, Dalton Trans. 2008, 5041.
| Crossref | GoogleScholarGoogle Scholar | 18802618PubMed |
[70] V. I. Bakhmutov, Dihydrogen Bonds: Principles, Experiments, and Applications 2008 (Wiley-Interscience: Hoboken, NJ).
[71] S. A. Kulkarni, J. Phys. Chem. A 1999, 103, 9330.
| Crossref | GoogleScholarGoogle Scholar |
[72] S. Mebs, S. Grabowsky, D. Förster, R. Kickbusch, M. Hartl, L. L. Daemen, W. Morgenroth, P. Luger, B. Paulus, D. Lentz, J. Phys. Chem. A 2010, 114, 10185.
| Crossref | GoogleScholarGoogle Scholar | 20726618PubMed |
[73] B. Németh, B. Khater, J.-C. Guillemin, T. Veszprémi, Inorg. Chem. 2010, 49, 4854.
| Crossref | GoogleScholarGoogle Scholar | 20433190PubMed |
[74] F. H. Stephens, R. T. Baker, M. H. Matus, D. J. Grant, D. A. Dixon, Angew. Chem. Int. Ed. 2007, 46, 746.
| Crossref | GoogleScholarGoogle Scholar |
[75] A. Haaland, Angew. Chem. Int. Ed. Engl. 1989, 28, 992.
| Crossref | GoogleScholarGoogle Scholar |
[76] F. Baitalow, J. Baumann, G. Wolf, K. Jaenicke-Rößler, G. Leitner, Thermochim. Acta 2002, 391, 159.
| Crossref | GoogleScholarGoogle Scholar |
[77] K. R. Leopold, M. Canagaratna, J. A. Phillips, Acc. Chem. Res. 1997, 30, 57.
| Crossref | GoogleScholarGoogle Scholar |
[78] H. Anane, A. Jarid, A. Boutalib, I. Nebot-Gil, F. Tomás, J. Mol. Struct. THEOCHEM 1998, 455, 51.
| Crossref | GoogleScholarGoogle Scholar |
[79] H. Anane, A. Boutalib, I. Nebot-Gil, T. Francisco, Chem. Phys. Lett. 1998, 287, 575.
| Crossref | GoogleScholarGoogle Scholar |