New Perspectives on Photosystem II Reaction Centres
Jeremy Hall A , Rafael Picorel B , Nicholas Cox A , Robin Purchase A and Elmars Krausz A CA Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
B Estacion Experimental de Aula Dei (CSIC), Avda. Montañana 1005, 50059-Zaragoza, Spain.
C Corresponding author. Email: elmars.krausz@anu.edu.au
Australian Journal of Chemistry 73(8) 669-676 https://doi.org/10.1071/CH19478
Submitted: 27 September 2019 Accepted: 12 November 2019 Published: 12 March 2020
Abstract
We apply the differential optical spectroscopy techniques of circular polarisation of luminescence (CPL) and magnetic CPL (MCPL) to the study of isolated reaction centres (RCs) of photosystem II (PS II). The data and subsequent analysis provide insights into aspects of the RC chromophore site energies, exciton couplings, and heterogeneities. CPL measurements are able to identify weak luminescence associated with the unbound chlorophyll-a (Chl-a) present in the sample. The overall sign and magnitude of the CPL observed relates well to the circular dichroism (CD) of the sample. Both CD and CPL are reasonably consistent with modelling of the RC exciton structure. The MCPL observed for the free Chl-a luminescence component in the RC samples is also easily understandable, but the MCPL seen near 680 nm at 1.8 K is anomalous, appearing to have a narrow, strongly negative component. A negative sign is inconsistent with MCPL of (exciton coupled) Qy states of either Chl-a or pheophytin-a (Pheo-a). We propose that this anomaly may arise as a result of the luminescence from a transient excited state species created following photo-induced charge separation within the RC. A comparison of CD spectra and modelling of RC preparations having a different number of pigments suggests that the non-conservative nature of the CD spectra observed is associated with the ‘special pair’ pigments PD1 and PD2.
References
[1] (a) E. Romero, R. Augulis, V. I. Novoderezhkin, M. Ferretti, J. Thieme, D. Zigmantas, R. van Grondelle, Nat. Phys. 2014, 10, 676.| Crossref | GoogleScholarGoogle Scholar | 26870153PubMed |
(b) F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, J. P. Ogilvie, Nat. Chem. 2014, 6, 706.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. R. Reimers, Z. L. Cai, R. Kobayashi, M. Ratsep, A. Freiberg, E. Krausz, Sci. Rep. 2013, 3, 2761.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) D. J. Nurnberg, J. Morton, S. Santabarbara, A. Telfer, P. Joliot, L. A. Antonaru, A. V. Ruban, T. Cardona, E. Krausz, A. Boussac, A. Fantuzzi, A. W. Rutherford, Science 2018, 360, 1210.
| Crossref | GoogleScholarGoogle Scholar | 29903971PubMed |
(b) T. Renger, E. Schlodder, J. Phys. Chem. B 2008, 112, 7351.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. R. Razeghifard, M. Chen, J. L. Hughes, J. Freeman, E. Krausz, T. Wydrzynski, Biochemistry 2005, 44, 11178.
| Crossref | GoogleScholarGoogle Scholar |
[3] Photosystem II: The Light-Driven Water:Plastoquinone Oxidoreductase (Eds T. Wydrzynski, K. Satoh) 2005, Vol. 22 (Springer: Dordrecht, The Netherlands).
[4] O. Nanba, K. Satoh, Proc. Natl. Acad. Sci. USA 1987, 84, 109.
| Crossref | GoogleScholarGoogle Scholar | 16593792PubMed |
[5] V. L. Tetenkin, B. A. Gulyaev, A. B. Rubin, M. Seibert, in Current Research in Photosynthesis (Ed. M. Baltscheffsky) 1990, pp. 427–430 (Springer: Dordrecht).
[6] (a) G. Raszewski, W. Saenger, T. Renger, Biophys. J. 2005, 88, 986.
| Crossref | GoogleScholarGoogle Scholar | 15556979PubMed |
(b) G. Raszewski, B. A. Diner, E. Schlodder, T. Renger, Biophys. J. 2008, 95, 105.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) V. I. Novoderezhkin, E. G. Andrizhiyevskaya, J. P. Dekker, R. van Grondelle, Biophys. J. 2005, 89, 1464.
| Crossref | GoogleScholarGoogle Scholar | 15980183PubMed |
(b) A. Gelzinis, D. Abramavicius, J. P. Ogilvie, L. Valkunas, J. Chem. Phys. 2017, 147, 115102.
| Crossref | GoogleScholarGoogle Scholar |
[8] K. Acharya, V. Zazubovich, M. Reppert, R. Jankowiak, J. Phys. Chem. B 2012, 116, 4860.
| Crossref | GoogleScholarGoogle Scholar | 22462595PubMed |
[9] H. Ago, H. Adachi, Y. Umena, T. Tashiro, K. Kawakami, N. Kamiya, L. Tian, G. Han, T. Kuang, Z. Liu, F. Wang, H. Zou, I. Enami, M. Miyano, J.-R. Shen, J. Biol. Chem. 2016, 291, 5676.
| Crossref | GoogleScholarGoogle Scholar | 26757821PubMed |
[10] (a) J. Hall, T. Renger, R. Picorel, E. Krausz, Biochim. Biophys. Acta 2016, 1857, 115.
| Crossref | GoogleScholarGoogle Scholar | 26449206PubMed |
(b) J. Hall, T. Renger, F. Müh, R. Picorel, E. Krausz, Biochim. Biophys. Acta Bioenerg. 2016, 1857, 1580.
| Crossref | GoogleScholarGoogle Scholar |
[11] J. R. Reimers, M. Biczysko, D. Bruce, D. F. Coker, T. J. Frankcombe, H. Hashimoto, J. Hauer, R. Jankowiak, T. Kramer, J. Linnanto, F. Mamedov, F. Müh, M. Rätsep, T. Renger, S. Styring, J. Wan, Z. Wang, Z.-Y. Wang-Otomoo, E. Krausz, Biochim. Biophys. Acta Bioenerg. 2016, 1857, 1627.
| Crossref | GoogleScholarGoogle Scholar |
[12] S. B. Piepho, P. N. Schatz, Group Theory in Spectroscopy with Applications to Magnetic Circular Dichroism 1983 (Wiley-Interscience: New York, NY).
[13] (a) T. Nozawa, M. Kobayashi, Z. Y. Wang, S. Itoh, M. Iwaki, M. Mimuro, K. Satoh, Spectrochimica Acta Part A 1995, 51, 125.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. Mimuro, M. Kobayashi, K. Shimada, K. Uezono, T. Nozawa, Biochemistry 2000, 39, 4020.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Umetsu, R. Seki, Z.-Y. Wang, I. Kumagai, T. Nozawa, J. Phys. Chem. B 2002, 106, 3987.
| Crossref | GoogleScholarGoogle Scholar |
(d) P. J. Smith, E. Krausz, V. M. Masters, T. Wydrzynski, S. Peterson, S. Styring, R. J. Pace, in PS2001 PROCEEDINGS: 12th International Congress on Photosynthesis 2001 (CSIRO Publishing: Brisbane).
(e) S. P. Årsköld, P. J. Smith, J.-R. Shen, R. J. Pace, E. Krausz, Photosynth. Res. 2005, 84, 309.
| Crossref | GoogleScholarGoogle Scholar |
(f) J. L. Hughes, R. Razeghifard, M. Logue, A. Oakley, T. Wydrzynski, E. Krausz, J. Am. Chem. Soc. 2006, 128, 3649.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) D. Zevenhuijzen, P. J. Zandstra, Biophys. Chem. 1984, 19, 121.
| Crossref | GoogleScholarGoogle Scholar | 17005137PubMed |
(b) J. L. Hughes, R. J. Pace, E. Krausz, Chem. Phys. Lett. 2004, 385, 116.
| Crossref | GoogleScholarGoogle Scholar |
[15] E. Krausz, J. L. Hughes, P. Smith, R. Pace, S. Peterson Årsköld, Photochem. Photobiol. Sci. 2005, 4, 744.
| Crossref | GoogleScholarGoogle Scholar | 16121287PubMed |
[16] (a) E. Krausz, Photosynth. Res. 2013, 116, 411.
| Crossref | GoogleScholarGoogle Scholar | 23839302PubMed |
(b) J. Morton, F. Akita, Y. Nakajima, J.-R. Shen, E. Krausz, Biochim. Biophys. Acta, Bioenerg. 2015, 1847, 153.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Morton, M. Chrysina, V. S. J. Craig, F. Akita, Y. Nakajima, W. Lubitz, N. Cox, J.-R. Shen, E. Krausz, Biochim. Biophys. Acta, Bioenerg. 2018, 1859, 88.
| Crossref | GoogleScholarGoogle Scholar |
[17] J. L. Hughes, E. Krausz, in Application of Physical Methods to Inorganic and Bioinorganic Chemistry (Eds R. A. Scott, C. M. Lukehart) 2007, pp. 1–20 (John Wiley & Sons, Ltd: Hoboken, NJ).
[18] M. Seibert, R. Picorel, in Photosynthesis Research Protocols (Ed. R. Carpentier) 2011, pp. 17–27 (Humana Press: New York, NY).
[19] E. Krausz, N. Cox, S. P. Arskold, Photosynth. Res. 2008, 98, 207.
| Crossref | GoogleScholarGoogle Scholar | 18663598PubMed |
[20] M. Germano, A. Y. Shkuropatov, H. Permentier, R. d. Wijn, A. J. Hoff, V. A. Shuvalov, H. J. van Gorkom, Biochemistry 2001, 40, 11472.
| Crossref | GoogleScholarGoogle Scholar | 11560495PubMed |
[21] C. Houssier, K. Sauer, J. Am. Chem. Soc. 1970, 92, 779.
| Crossref | GoogleScholarGoogle Scholar |
[22] (a) P. J. Smith, S. Peterson, V. M. Masters, T. Wydrzynski, S. Styring, E. Krausz, R. J. Pace, Biochemistry 2002, 41, 1981.
| Crossref | GoogleScholarGoogle Scholar | 11827545PubMed |
(b) S. Peterson Årsköld, V. M. Masters, B. J. Prince, P. J. Smith, R. J. Pace, E. Krausz, J. Am. Chem. Soc. 2003, 125, 13063.
| Crossref | GoogleScholarGoogle Scholar |
[23] (a) M. Gouterman, Spectrochimica Acta. 1957, 10, 232.
(b) M. Gouterman, J. Mol. Spectrosc. 1961, 6, 138.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Gouterman, L. C. Snyder, G. H. Wagniere, J. Mol. Spectrosc. 1963, 11, 108.
| Crossref | GoogleScholarGoogle Scholar |
[24] (a) M. R. Cheesman, C. Greenwood, A. J. Thomson, Adv. Inorg. Chem. 1991, 36, 201.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. Mack, M. J. Stillman, N. Kobayashi, Coord. Chem. Rev. 2007, 251, 429.
| Crossref | GoogleScholarGoogle Scholar |
[25] F. Müh, M. Plockinger, T. Renger, J. Phys. Chem. Lett. 2017, 8, 850.
| Crossref | GoogleScholarGoogle Scholar | 28151674PubMed |
[26] Y. Umena, K. Kawakami, J. R. Shen, N. Kamiya, Nature 2011, 473, 55.
| Crossref | GoogleScholarGoogle Scholar | 21499260PubMed |
[27] E. Krausz, J. Higgins, H. Riesen, Inorg. Chem. 1993, 32, 4053.
| Crossref | GoogleScholarGoogle Scholar |
[28] N. Cox, J. Hughes, A. W. Rutherford, E. Krausz, Phys. Procedia 2010, 3, 1601.
| Crossref | GoogleScholarGoogle Scholar |
[29] (a) T. Renger, Phys. Rev. Lett. 2004, 93, 188101.
| Crossref | GoogleScholarGoogle Scholar | 15525210PubMed |
(b) J. Adolphs, F. Müh, M. E. A. Madjet, M. S. A. Busch, T. Renger, J. Am. Chem. Soc. 2010, 132, 3331.
| Crossref | GoogleScholarGoogle Scholar |
(c) V. I. Novoderezhkin, J. P. Dekker, R. van Grondelle, Biophys. J. 2007, 93, 1293.
| Crossref | GoogleScholarGoogle Scholar |
[30] N. Cox, J. L. Hughes, R. Steffen, P. J. Smith, A. W. Rutherford, R. J. Pace, E. Krausz, J. Phys. Chem. B 2009, 113, 12364.
| Crossref | GoogleScholarGoogle Scholar | 19685864PubMed |
[31] J. L. Hughes, P. Smith, R. Pace, E. Krausz, Biochim. Biophys. Acta 2006, 1757, 841.
| Crossref | GoogleScholarGoogle Scholar | 16859635PubMed |