Mixed Ramp-Gaussian Basis Sets for Core-Dependent Properties: STO-RG and STO-R2G for Li-Ne
Claudia S. Cox A , Juan Camilo Zapata A B and Laura K. McKemmish A CA School of Chemistry, University of New South Wales, Kensington, Sydney, NSW 2052, Australia.
B Departamento de Ciencias Químicas, Universidad Icesi, Cali, Valle del Cauca, Colombia.
C Corresponding author. Email: l.mckemmish@unsw.edu.au
Australian Journal of Chemistry 73(10) 911-922 https://doi.org/10.1071/CH19466
Submitted: 24 September 2019 Accepted: 5 November 2019 Published: 31 March 2020
Abstract
The traditional Gaussian basis sets used in modern quantum chemistry lack an electron-nuclear cusp, and hence struggle to accurately describe core electron properties. A recently introduced novel type of basis set, mixed ramp-Gaussians, introduce a new primitive function called a ramp function which addresses this issue. This paper introduces three new mixed ramp-Gaussian basis sets - STO-R, STO-RG and STO-R2G, made from a linear combination of ramp and Gaussian primitive functions - which are derived from the single-core-zeta Slater basis sets for the elements Li to Ne. This derivation is done in an analogous fashion to the famous STO-nG basis sets. The STO-RG basis functions are found to outperform the STO-3G basis functions and STO-R2G outperforms STO-6G, both in terms of wavefunction fit and other key quantities such as the one-electron energy and the electron-nuclear cusp. The second part of this paper performs preliminary investigations into how standard all-Gaussian basis sets can be converted to ramp-Gaussian basis sets through modifying the core basis functions. Using a test case of the 6-31G basis set for carbon, we determined that the second Gaussian primitive is less important when fitting a ramp-Gaussian core basis function directly to an all-Gaussian core basis function than when fitting to a Slater basis function. Further, we identified the basis sets that are single-core-zeta and thus should be most straightforward to convert to mixed ramp-Gaussian basis sets in the future.
References
[1] É. Brémond, M. Savarese, N. Q. Su, Á. J. Pérez-Jiménez, X. Xu, J. C. Sancho-Garcia, C. Adamo, J. Chem. Theory Comput. 2016, 12, 459.| Crossref | GoogleScholarGoogle Scholar | 26730741PubMed |
[2] A. Karton, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2016, 6, 292.
| Crossref | GoogleScholarGoogle Scholar |
[3] K. A. Peterson, D. Feller, D. A. Dixon, Theor. Chem. Acc. 2012, 131, 1079.
| Crossref | GoogleScholarGoogle Scholar |
[4] G. J. Cheng, X. Zhang, L. W. Chung, L. Xu, Y. D. Wu, J. Am. Chem. Soc. 2015, 137, 1706.
| Crossref | GoogleScholarGoogle Scholar | 25568962PubMed |
[5] J. A. Pople, Rev. Mod. Phys. 1999, 71, 1267.
[6] L. Goerigk, N. Mehta, Aust. J. Chem. 2019, 72, 563.
[7] J. I. Gersten, S. W. Frederick, The Physics and Chemistry of Materials 2001 (Wiley-Interscience: Hoboken, NJ).
[8] R. Darbeau, Appl. Spectrosc. Rev. 2006, 41, 401.
| Crossref | GoogleScholarGoogle Scholar |
[9] F. Jensen, J. Chem. Theory Comput. 2008, 4, 719.
| Crossref | GoogleScholarGoogle Scholar | 26621087PubMed |
[10] F. Jensen, J. Chem. Theory Comput. 2015, 11, 132.
| Crossref | GoogleScholarGoogle Scholar | 26574211PubMed |
[11] F. Jensen, Theor. Chem. Acc. 2010, 126, 371.
| Crossref | GoogleScholarGoogle Scholar |
[12] M. M. Roessler, E. Salvadori, Chem. Soc. Rev. 2018, 47, 2534.
| Crossref | GoogleScholarGoogle Scholar | 29498718PubMed |
[13] M. J. Felton, Anal. Chem. 2003, 75, 269A.
| 12948117PubMed |
[14] T. C. Gibb, Principles of Mössbauer Spectroscopy 1976 (Springer: Norwich).
[15] Z. H. Loh, S. R. Leone, J. Phys. Chem. Lett. 2013, 4, 292.
| Crossref | GoogleScholarGoogle Scholar | 26283437PubMed |
[16] P. M. Kraus, M. Zürch, S. K. Cushing, D. M. Neumark, S. R. Leone, Nat. Rev. Chem. 2018, 2, 82.
| Crossref | GoogleScholarGoogle Scholar |
[17] M. A. Ambroise, F. Jensen, J. Chem. Theory Comput. 2019, 15, 325.
| Crossref | GoogleScholarGoogle Scholar | 30495950PubMed |
[18] F. Jensen, Introduction to Computational Chemistry, 2nd edn 2007 Vol. 90 (John Wiley & Sons: Chichester).
[19] J. C. Slater, Phys. Rev. 1930, 36, 57.
| Crossref | GoogleScholarGoogle Scholar |
[20] P. E. Hoggan, M. Belen Ruíz, T. Ozdogan, in Quantum Frontiers of Atoms and Molecules (Ed. M. V. Putz) 2011, Ch. 4, pp. 61–90 (Nova Publishing Inc.: New York, NY).
[21] F. E. Harris, H. H. Michels, J. Chem. Phys. 1965, 43, S165.
[22] F. E. Harris, H. H. Michels, J. Chem. Phys. 1966, 45, 116.
| Crossref | GoogleScholarGoogle Scholar |
[23] J. D. Talman, J. Chem. Phys. 1984, 80, 2000.
| Crossref | GoogleScholarGoogle Scholar |
[24] E. Filter, E. O. Steinborn, Phys. Rev. A 1978, 18, 1.
| Crossref | GoogleScholarGoogle Scholar |
[25] S. Huzinaga, Comput. Phys. Rep. 1985, 2, 281.
| Crossref | GoogleScholarGoogle Scholar |
[26] G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. van Gisbergen, J. G. Snijders, T. Ziegler, J. Comput. Chem. 2001, 22, 931.
| Crossref | GoogleScholarGoogle Scholar |
[27] S. F. Boys, Proc. R. Soc. Lond. 1950, A200.
[28] A. F. Jalbout, F. Nazari, L. Turker, J. Mol. Struct. THEOCHEM 2004, 671, 1.
| Crossref | GoogleScholarGoogle Scholar |
[29] P. M. Gill, B. G. Johnson, J. A. Pople, Chem. Phys. Lett. 1994, 217, 65.
| Crossref | GoogleScholarGoogle Scholar |
[30] W. J. Hehre, R. F. Stewart, J. A. Pople, J. Chem. Phys. 1969, 51, 2657.
| Crossref | GoogleScholarGoogle Scholar |
[31] K. D. Dobbs, W. J. Hehre, J. Comput. Chem. 1987, 8, 861.
| Crossref | GoogleScholarGoogle Scholar |
[32] W. J. Hehre, K. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
| Crossref | GoogleScholarGoogle Scholar |
[33] V. A. Rassolov, J. A. Pople, M. A. Ratner, T. L. Windus, J. Chem. Phys. 1998, 109, 1223.
| Crossref | GoogleScholarGoogle Scholar |
[34] R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650.
| Crossref | GoogleScholarGoogle Scholar |
[35] M. J. Frisch, J. A. Pople, J. S. Binkley, J. Chem. Phys. 1984, 80, 3265.
| Crossref | GoogleScholarGoogle Scholar |
[36] T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
| Crossref | GoogleScholarGoogle Scholar |
[37] D. E. Woon, T. H. Dunning, J. Chem. Phys. 1995, 103, 4572.
| Crossref | GoogleScholarGoogle Scholar |
[38] K. A. Peterson, T. H. Dunning, J. Chem. Phys. 2002, 117, 10548.
| Crossref | GoogleScholarGoogle Scholar |
[39] F. Jensen, J. Chem. Phys. 2001, 115, 9113.
| Crossref | GoogleScholarGoogle Scholar |
[40] F. Jensen, J. Chem. Theory Comput. 2014, 10, 1074.
| Crossref | GoogleScholarGoogle Scholar | 26580184PubMed |
[41] F. Jensen, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013, 3, 273.
| Crossref | GoogleScholarGoogle Scholar |
[42] B. Nagy, F. Jensen, Rev. Comput. Chem. 2017, 30, 93.
[43] D. Feller, J. Comput. Chem. 1996, 17, 1571.
| Crossref | GoogleScholarGoogle Scholar |
[44] K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, T. L. Windus, J. Chem. Inf. Model. 2007, 47, 1045.
| Crossref | GoogleScholarGoogle Scholar | 17428029PubMed |
[45] L. K. McKemmish, P. M. Gill, J. Chem. Theory Comput. 2012, 8, 4891.
| Crossref | GoogleScholarGoogle Scholar | 26593182PubMed |
[46] A. J. H. Wachters, J. Chem. Phys. 1970, 52, 1033.
| Crossref | GoogleScholarGoogle Scholar |
[47] F. Neese, Inorg. Chim. Acta. 2002, 337, 181.
| Crossref | GoogleScholarGoogle Scholar |
[48] R. Laasner, W. Huhn, J. Colell, T. Theis, V. Yu, W. Warren, V. Blum, Comput. Phys. 2018, arXiv:1805.12225.
[49] I. Y. Zhang, X. Ren, P. Rinke, V. Blum, M. Scheffler, New J. Phys. 2013, 15, 123033.
| Crossref | GoogleScholarGoogle Scholar |
[50] L. K. McKemmish, A. T. Gilbert, P. M. Gill, J. Chem. Theory Comput. 2014, 10, 4369.
| Crossref | GoogleScholarGoogle Scholar | 26588134PubMed |
[51] D. M. Bishop, J. Chem. Phys. 1964, 40, 1322.
| Crossref | GoogleScholarGoogle Scholar |
[52] D. M. Bishop, J. Chem. Phys. 1968, 48, 291.
| Crossref | GoogleScholarGoogle Scholar |
[53] L. K. McKemmish, J. Chem. Phys. 2015, 142, 134104.
| Crossref | GoogleScholarGoogle Scholar | 25854225PubMed |
[54] L. K. McKemmish, A. T. Gilbert, J. Chem. Theory Comput. 2015, 11, 3679.
| Crossref | GoogleScholarGoogle Scholar | 26574451PubMed |
[55] Wolfram Research, Mathematica 2018 (Wolfram Research: Champaign, IL).
[56] R. S. Grev, H. F. Schaefer, J. Chem. Phys. 1989, 91, 7305.
| Crossref | GoogleScholarGoogle Scholar |