Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Two-Dimensional CoII Coordination Polymer for Photodegradation of Organic Dyes and Treatment of Temporary Osteoporosis of the Hip (TOH) by Regulating wnt/β-catenin/PPARγ Pathway

Hui Chen A B and Xue-Jian Wu A C
+ Author Affiliations
- Author Affiliations

A Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.

B Department of Orthopaedic Surgery, People’s Hospital of Puyang City, Puyang, Henan 457000, China.

C Corresponding author. Email: xuejian_wu1972@126.com

Australian Journal of Chemistry 73(1) 9-15 https://doi.org/10.1071/CH19420
Submitted: 7 September 2019  Accepted: 23 October 2019   Published: 5 December 2019

Abstract

In this study, a new two-dimensional CoII-containing coordination polymer [Co(pda)(H2O)](DMF)2 (1, DMF = N,N-dimethylformamide) based on a light-harvesting triphenylamine type organic ligand has been successfully prepared by reaction of Co(NO3)2⋯6H2O and 4,4′-(phenylazanediyl)dibenzoic acid (H2pda) in a mixed solvent of water and DMF. Complex 1 has significant photocatalytic activity under visible light for the degradation of organic dyes such as rhodamine B (RhB), methylene blue (MB), as well as methyl orange (MO) assisted by H2O2. Compound 1 was investigated for anti-osteoporosis activity, the Annexin V-FITC/PI method was used to test the relationship between apoptosis and osteoporosis and the effect of 1 on bone marrow stem cell (BMSC) apoptosis. The expression levels of wnt/β, catenin, and PPARγ after treatment with 1 was determined by reverse transcription quantitative polymerase chain reaction. The DNA cleavage ability of 1 was further studied by molecular docking.


References

[1]  A. Modi, P. R. Ebeling, M. S. Lee, Y. K. Min, A. Mithal, X. Yang, S. Baidya, S. Sen, S. Sajjan, Bone Rep. 2017, 7, 108.
         | Crossref | GoogleScholarGoogle Scholar | 29062864PubMed |

[2]  D. Zhang, H. Q. Zhang, S. Zhao, Z. G. Li, S. X. Hou, Int. J. Electrochem. Sci. 2019, 14, 4659.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  S. Guo, R. Chen, H. Li, T. Zhang, Y. Liu, Int. J. Softw. Eng. Know. 2019, 29, 139.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  H. Li, G. Gao, R. Chen, X. Ge, S. Guo, L. Y. Hao, Int. J. Softw. Eng. Know. 2019, 29, 93.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  L. Vannucci, M. L. Brandi, Expert Rev. Clin. Pharmacol. 2016, 9, 1315.
         | Crossref | GoogleScholarGoogle Scholar | 27322492PubMed |

[6]  K. H. Thompson, Science 2003, 300, 936.
         | Crossref | GoogleScholarGoogle Scholar | 12738851PubMed |

[7]  P. C. Bruijnincx, P. J. Sadler, Curr. Opin. Chem. Biol. 2008, 12, 197.
         | Crossref | GoogleScholarGoogle Scholar | 18155674PubMed |

[8]  C. R. Munteanu, K. Suntharalingam, Dalton Trans. 2015, 44, 13796.
         | Crossref | GoogleScholarGoogle Scholar | 26148776PubMed |

[9]  X. Feng, Y. Q. Feng, N. Guo, Y. L. Sun, T. Zhang, L. F. Ma, L. Y. Wang, Inorg. Chem. 2017, 56, 1713.
         | Crossref | GoogleScholarGoogle Scholar | 28094932PubMed |

[10]  X. Feng, R. F. Li, L. Y. Wang, S. W. Ng, G. Z. Qin, L. F. Ma, CrystEngComm 2015, 17, 7878.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  X. Feng, Y. Q. Feng, L. Liu, L. Y. Wang, H. L. Song, S. W. Ng, Dalton Trans. 2013, 42, 7741.
         | Crossref | GoogleScholarGoogle Scholar | 23549773PubMed |

[12]  X. Feng, Y. Shang, H. Zhang, R. Li, W. Wang, D. Zhang, L. Wang, Z. Li, RSC Adv. 2019, 9, 16328.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  H. Zhang, G. Liu, L. Shi, H. Liu, T. Wang, J. Ye, Nano Energy 2016, 22, 149.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  T. Wen, D. X. Zhang, J. Zhang, Inorg. Chem. 2013, 52, 12.
         | Crossref | GoogleScholarGoogle Scholar | 23244571PubMed |

[15]  T. Wen, D. X. Zhang, J. Liu, R. Lin, J. Zhang, Chem. Commun. 2013, 49, 5660.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  S. Zang, Y. Su, Y. Li, Z. Ni, Q. Meng, Inorg. Chem. 2006, 45, 174.
         | Crossref | GoogleScholarGoogle Scholar | 16390053PubMed |

[17]  J. Yang, Q. Yue, G. D. Li, J. J. Cao, G. H. Li, J. S. Chen, Inorg. Chem. 2006, 45, 2857.
         | Crossref | GoogleScholarGoogle Scholar | 16562941PubMed |

[18]  H. Wang, K. Wang, D. Sun, Z. H. Ni, J. Jiang, CrystEngComm 2011, 13, 279.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  D. Chen, W. Shi, P. Cheng, Chem. Commun. 2015, 51, 370.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  R. Chandra, S. Mukhopadhyay, M. Nath, Mater. Lett. 2016, 164, 571.
         | Crossref | GoogleScholarGoogle Scholar |