Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Reversible and Vapochromic Chemisorption of Ammonia by a Copper(ii) Coordination Polymer

Christina Wegeberg https://orcid.org/0000-0002-6034-453X A , David Nielsen https://orcid.org/0000-0002-7764-1151 B , Susanne Mossin https://orcid.org/0000-0001-7763-9660 B , Brendan F. Abrahams https://orcid.org/0000-0003-2957-860X C , Vickie McKee https://orcid.org/0000-0002-7780-5814 A and Christine J. McKenzie https://orcid.org/0000-0001-5587-0626 A D
+ Author Affiliations
- Author Affiliations

A Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.

B Centre for Catalysis and Sustainable Chemistry, Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.

C School of Chemistry, University of Melbourne, Parkville, Vic. 3010, Australia.

D Corresponding author. Email: mckenzie@sdu.dk

Australian Journal of Chemistry 72(10) 817-826 https://doi.org/10.1071/CH19264
Submitted: 10 June 2019  Accepted: 10 July 2019   Published: 27 August 2019

Abstract

The single crystal X-ray structure determination of {[Cu(tpt)(o-phthalate)]·31/3(C2H2Cl4)}n (tpt = 2,4,6-tri-4-pyridyl-1,3,5-triazine, C2H2Cl4 = 1,1,2,2-tetrachloroethane = TCE) shows a 3D network in which CuII centres are linked by 3-connecting tpt ligands with the topology of a 12,3 net. CuII centres are further linked by o-phthalate dianions. The copper coordination geometry is square pyramidal, with o-phthalate oxygen donors trans to each other in the basal plane and the remaining positions taken by the pyridines of three linking tpt units. The solvent accessible void space is ~65 %. The pale blue-green crystalline desolvate, obtained by heating to 200°C or washing the TCE solvate with acetone is formulated as [Cu(tpt)(o-phthalate)]n. Powder X-ray diffraction and electron paramagnetic resonance spectroscopy show that the crystal structure and the CuII geometry changes upon desolvation. The crystalline desolvated phase sorbs two equivalents of ammonia per copper ion. The adduct, mauve [Cu(tpt)(o-phthalate)(NH3)2]n, shows reasonable crystallinity and is stable up to ~150°C under ambient conditions before the reversible desorption (minimum 10 cycles) of the guest ammonia. The colour change and high desorption temperature, along with changes in g values, is suggestive of chemisorption in two steps with Cu–ammine bonding in the loaded phase.


References

[1]  H. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi, Science 2013, 341, 1230444.
         | Crossref | GoogleScholarGoogle Scholar | 23990564PubMed |

[2]  S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  J.-R. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38, 1477.
         | Crossref | GoogleScholarGoogle Scholar | 19384449PubMed |

[4]  X. Fang, B. Zong, S. Mao, Nano-Micro Lett. 2018, 10, 64.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  H. Wang, W. P. Lustig, J. Li, Chem. Soc. Rev. 2018, 47, 4729.
         | Crossref | GoogleScholarGoogle Scholar | 29532822PubMed |

[6]  X. Zhao, Y. Wang, D.-S. Li, X. Bu, P. Feng, Adv. Mater. 2018, 30, 1705189.
         | Crossref | GoogleScholarGoogle Scholar | 30370676PubMed |

[7]  J. Zhang, Z. Chen, J. Chromatogr. A 2017, 1530, 1.
         | Crossref | GoogleScholarGoogle Scholar | 29150064PubMed |

[8]  B. Timmer, W. Olthuis, A. van den Berg, Sens. Actuators B Chem. 2005, 107, 666.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  G. W. Peterson, G. W. Wagner, A. Balboa, J. Mahle, T. Sewell, C. J. Karwacki, J. Phys. Chem. C. 2009, 113, 13906.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  T. Kajiwara, M. Higuchi, D. Watanabe, H. Higashimura, T. Yamada, H. Kitagawa, Chem – Eur. J. 2014, 20, 15611.
         | Crossref | GoogleScholarGoogle Scholar | 25313521PubMed |

[11]  M. G. Campbell, D. Sheberla, S. F. Liu, T. M. Swager, M. Dincă, Angew. Chem. Int. Ed. 2015, 54, 4349.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  A. Godiksen, F. N. Stappen, P. N. R. Vennestrøm, F. Giordanino, S. B. Rasmussen, L. F. Lundegaard, S. Mossin, J. Phys. Chem. C 2014, 118, 23126.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  H. L. Anderson, S. Anderson, J. K. M. Sanders, J. Chem. Soc., Perkin Trans. 1 1995, 2231.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  G. M. Sheldrick, SADABS V2012/1 1996 (University of Göttingen: Göttingen).

[15]  G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Adv. 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  G. M. Sheldrick, Acta Crystallogr. Sect. C: Struct. Chem. 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  A. L. Spek, Acta Crystallogr. Sect. C: Struct. Chem. 2015, 71, 9.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  O. Delgado-Friedrichs, Systre – Program for the Analysis of Periodic Nets v. 19.6.0 2019. Available at gavrog.org.

[19]  A. F. Wells, Three-Dimensional Nets and Polyhedra 1977 (Wiley: New York, NY).

[20]  A. F. Wells, Further Studies Of Three-dimensional Nets (ACA Monograph, No. 8) 1979 (American Crystallographic Association: New York, NY).

[21]  M. O’Keeffe, M. A. Peskov, S. J. Ramsden, O. M. Yaghi, Acc. Chem. Res. 2008, 41, 1782.
         | Crossref | GoogleScholarGoogle Scholar | 18834152PubMed |

[22]  B. F. Hoskins, R. Robson, J. Am. Chem. Soc. 1990, 112, 1546.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  R. Robson, B. F. Abrahams, S. R. Batten, R. W. Gable, B. F. Hoskins, J. Liu, in Supramolecular Architecture: Synthetic Control in Thin Films and Solids (Ed. T. Bein) 1992, pp. 256–273 (American Chemical Society: Washington, D.C.).

[24]  M. O’Keeffe, B. G. Hyde, I. Crystal Structures, Patterns and Symmetry 1996 (Mineralogical Society of America: Washington, D.C.).

[25]  B. F. Abrahams, S. R. Batten, M. J. Grannas, H. Hamit, B. F. Hoskins, R. Robson, Angew. Chem. Int. Ed. 1999, 38, 1475.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  D.-S. Zhang, Z. Chang, Y.-F. Li, Z.-Y. Jiang, Z.-H. Xuan, Y.-H. Zhang, J.-R. Li, Q. Chen, T.-L. Hu, X.-H. Bu, Sci. Rep. 2013, 3, 3312.
         | Crossref | GoogleScholarGoogle Scholar | 24264725PubMed |

[27]  C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, J. van de Streek, J. Appl. Cryst. 2006, 39, 453.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Cryst. 2008, 41, 466.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  P. W. Anderson, P. R. Weiss, Rev. Mod. Phys. 1953, 25, 269.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  R. Calvo, H. Isern, M. A. Mesa, Chem. Phys. 1985, 100, 89.
         | Crossref | GoogleScholarGoogle Scholar |