A Scalable, Combined-Batch, and Continuous-Flow Synthesis of a Bio-Inspired UV-B Absorber
Mark York A C , Karen E. Jarvis A , Jamie A. Freemont A , John H. Ryan A , G. Paul Savage A , Stephanie A. Logan A and Larissa Bright B
+ Author Affiliations
- Author Affiliations
A CSIRO Manufacturing, CSIRO, Clayton, Vic. 3168, Australia.
B Coral Sunscreen Pty Ltd, Aitkenvale, Qld 4814, Australia.
C Corresponding author. Email: mark.york@csiro.au
Australian Journal of Chemistry 72(11) 860-866 https://doi.org/10.1071/CH19252
Submitted: 3 June 2019 Accepted: 5 July 2019 Published: 24 July 2019
Abstract
A new, chromatography-free synthesis for the preparation of an experimental UV-B absorber is reported. A key step of the process is a one-pot partial reduction of a symmetrical imide with a sequential dehydration step. The synthesis uses several continuous-flow steps to increase sample throughput and was used to prepare sufficient material to support further testing activities in >99 % purity.
References
[1] W. C. Dunlap, J. M. Shick, Y. Yamamoto, Redox Rep. 1999, 4, 301.| Crossref | GoogleScholarGoogle Scholar | 10772069PubMed |
[2] K. Shibata, Plant Cell Physiol. 1969, 10, 325.
[3] W. C. Dunlap, B. E. Chalker, W. M. Bandaranayake, J. J. Wu Won, Int. J. Cosmet. Sci. 1998, 20, 41.
| Crossref | GoogleScholarGoogle Scholar | 18505488PubMed |
[4] R. Losantos, I. Funes-Ardoiz, J. Aguilera, E. Herrera-Ceballos, C. Garcia-Iriepa, P. J. Campos, D. Sampedro, Angew. Chem. Int. Ed. 2017, 56, 2632.
| Crossref | GoogleScholarGoogle Scholar |
[5] I. Tsujino, K. Yabe, I. Sekikawa, N. Hamanaka, Tetrahedron Lett. 1978, 19, 1401.
| Crossref | GoogleScholarGoogle Scholar |
[6] S. Takano, D. Uemara, Y. Hirata, Tetrahedron Lett. 1978, 19, 2299.
| Crossref | GoogleScholarGoogle Scholar |
[7] G. Bird, P. J. Chalmers, N. Fitzmaurice, D. J. Rigg, S. H. Thang, U.S. Patent 5 637 718 1997.
[8] S. H. Thang, D. J. Rigg, Synth. Commun. 1993, 23, 2355.
| Crossref | GoogleScholarGoogle Scholar |
[9] Scifinder commercial sources search April 2019. Available at https://scifinder.cas.org
[10] M. Tanaka, H. Urata, T. Fuchikami, Tetrahedron Lett. 1986, 27, 3165.
| Crossref | GoogleScholarGoogle Scholar |
[11] K. Kondo, T. Takashima, M. Suda, U.S. Patent 4 235 780 1980.
[12] J. Ryan, M. York, Australian Patent 2013351912 2013.
[13] G. Kantin, E. Chupakhin, D. Dar’in, M. Krasavin, Tetrahedron Lett. 2017, 58, 3160.
| Crossref | GoogleScholarGoogle Scholar |
[14] J. Picha, V. Vanek, M. Budesinsky, J. Mladkova, T. A. Garrow, Eur. J. Med. Chem. 2013, 65, 256.
| Crossref | GoogleScholarGoogle Scholar | 23727536PubMed |
[15] H. Flink, T. Putkonen, A. Sipos, R. Jokela, Tetrahedron 2010, 66, 887.
| Crossref | GoogleScholarGoogle Scholar |
[16] For a recent review, see: M. B. Plutschack, B. Pieber, K. Gilmore, P. H. Seeberger, Chem. Rev. 2017, 117, 11796.
| Crossref | GoogleScholarGoogle Scholar | 28570059PubMed |
[17] Atmospheric Solids Analysis Probe (M&M Mass Spec Consulting LLC: Harbeson, DE). Available at http://www.asap-ms.com/ (accessed 8 July 2019)
[18] C. Petucci, J. Diffenda, J. Mass Spectrom. 2008, 43, 1565.
| Crossref | GoogleScholarGoogle Scholar | 18470958PubMed |
[19] A. D. Ray, J. Hammond, H. Major, Eur. J. Mass Spectrom. 2010, 16, 169.
| Crossref | GoogleScholarGoogle Scholar |