Halogen Functionalization of Aluminium Fumarate Metal–Organic Framework via In Situ Hydrochlorination of Acetylenedicarboxylic Acid*
Tobie J. Matemb Ma Ntep A , Wei Wu A , Hergen Breitzke B , Carsten Schlüsener A , Bastian Moll A , Laura Schmolke A , Gerd Buntkowsky B and Christoph Janiak A CA Institut für Anorganische Chemie, Heinrich-Heine-Universität Düsseldorf, D-40204 Düsseldorf, Germany.
B Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße. 4, D-64287 Darmstadt, Germany.
C Corresponding author. Email: janiak@uni-duesseldorf.de
Australian Journal of Chemistry 72(10) 835-841 https://doi.org/10.1071/CH19221
Submitted: 13 May 2019 Accepted: 9 August 2019 Published: 10 September 2019
Abstract
The successful chloro-functionalization of aluminium fumarate (MIL-53-Fum) was achieved by in situ hydrochlorination of acetylenedicarboxylic acid on reaction with aluminium chloride resulting in the formation of the aluminium chlorofumarate metal–organic framework (MIL-53-Fum-Cl = [Al(OH)(Fum-Cl)]) in a one-pot reaction. The chloro functional groups decorating the pores enhance gas (CO2, CH4, and H2) sorption capacities and affinity compared with the non-functionalized MIL-53-Fum. The functionalization also results in a 2-fold increase in the selective adsorption of CO2 over CH4 compared with MIL-53-Fum.
References
[1] (a) H. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi, Science 2013, 341, 1230444.| Crossref | GoogleScholarGoogle Scholar | 23990564PubMed |
(b) C. Janiak, J. K. Vieth, New J. Chem. 2010, 34, 2366.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) S. M. Cohen, Chem. Rev. 2012, 112, 970.
| Crossref | GoogleScholarGoogle Scholar | 21916418PubMed |
(b) K. K. Tanabe, S. M. Cohen, Chem. Soc. Rev. 2011, 40, 498.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Torrisi, R. G. Bell, C. Mellot-Draznieks, Cryst. Growth Des. 2010, 10, 2839.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. Chavan, J. G. Vitillo, M. J. Uddin, F. Bonino, C. Lamberti, E. Groppo, K.-P. Lillerud, S. Bordiga, Chem. Mater. 2010, 22, 4602.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) X. Kong, T. He, Y. Zhang, X. Wu, S. Wang, M. Xu, G. Si, J. J. Li, Chem. Sci. 2019, 10, 3949.
| Crossref | GoogleScholarGoogle Scholar | 31015934PubMed |
(b) X.-M. Zhang, Coord. Chem. Rev. 2005, 249, 1201.
| Crossref | GoogleScholarGoogle Scholar |
[4] T. J. Matemb Ma Ntep, H. Reinsch, B. Moll, E. Hastürk, S. Gökpinar, H. Breitzke, C. Schlüsener, L. Schmolke, G. Buntkowsky, C. Janiak, Chem. – Eur. J. 2018, 24, 14048.
| Crossref | GoogleScholarGoogle Scholar |
[5] M. Gaab, N. Trukhan, S. Maurer, R. Gummaraju, U. Müller, Microporous Mesoporous Mater. 2012, 157, 131.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) F. Jeremias, D. Fröhlich, C. Janiak, S. K. Henninger, RSC Adv. 2014, 4, 24073.
| Crossref | GoogleScholarGoogle Scholar |
(b) H. Kummer, F. Jeremias, A. Warlo, G. Füldner, D. Fröhlich, C. Janiak, R. Gläser, S. K. Henninger, Ind. Eng. Chem. Res. 2017, 56, 8393.
| Crossref | GoogleScholarGoogle Scholar |
[7] S. Karmakar, J. Dechnik, C. Janiak, S. De, J. Hazard. Mater. 2016, 303, 10.
| Crossref | GoogleScholarGoogle Scholar | 26513559PubMed |
[8] J. A. Coelho, A. M. Ribeiro, A. F. P. Ferreira, S. M. P. Lucena, A. E. Rodrigues, D. C. S. de Azevedo, Ind. Eng. Chem. Res. 2016, 55, 2134.
| Crossref | GoogleScholarGoogle Scholar |
[9] B. Bozbiyik, J. Lannoeye, D. E. De Vos, G. V. Baron, J. F. M. Denayer, Phys. Chem. Chem. Phys. 2016, 18, 3294.
| Crossref | GoogleScholarGoogle Scholar | 26752453PubMed |
[10] Y. Wang, Q. Qu, G. Liub, V. S. Battaglia, H. Zheng, Nano Energy 2017, 39, 200.
| Crossref | GoogleScholarGoogle Scholar |
[11] T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey, Chem. – Eur. J. 2004, 10, 1373.
| Crossref | GoogleScholarGoogle Scholar | 15034882PubMed |
[12] E. Alvarez, N. Guillou, C. Martineau, B. Bueken, B. Van de Voorde, Cl. Le Guillouzer, P. Fabry, F. Nouar, F. Taulelle, D. de Vos, J.-S. Chang, K. H. Cho, N. Ramsahye, T. Devic, M. Daturi, G. Maurin, C. Serre, Angew. Chem. Int. Ed. 2015, 54, 3664.
| Crossref | GoogleScholarGoogle Scholar |
[13] F. Jeremias, D. Fröhlich, C. Janiak, S. K. Henninger, RSC Adv. 2014, 4, 24073.
| Crossref | GoogleScholarGoogle Scholar |
[14] M. V. Solovyeva, L. G. Gordeeva, T. A. Krieger, Y. I. Aristov, Energy Convers. Manage. 2018, 174, 356.
| Crossref | GoogleScholarGoogle Scholar |
[15] H. Furukawa, F. Gándara, Y.-B. Zhang, J. Jiang, W. L. Queen, M. R. Hudson, O. M. Yaghi, J. Am. Chem. Soc. 2014, 136, 4369.
| Crossref | GoogleScholarGoogle Scholar | 24588307PubMed |
[16] J. Canivet, J. Bonnefoy, C. Daniel, A. Legrand, B. Coasne, D. Farrusseng, New J. Chem. 2014, 38, 3102.
| Crossref | GoogleScholarGoogle Scholar |
[17] S. Shalini, S. Nandi, A. Justin, R. Maitya, R. Vaidhyanathan, Chem. Commun. 2018, 13472.
| Crossref | GoogleScholarGoogle Scholar |
[18] A. H. Assen, Y. Belmabkhout, K. Adil, P. M. Bhatt, D.-X. Xue, H. Jiang, M. Eddaoudi, Angew. Chem. Int. Ed. 2015, 54, 14353.
| Crossref | GoogleScholarGoogle Scholar |
[19] H. Reinsch, T. Homburg, N. Heidenreich, D. Fröhlich, S. Hennninger, M. Wark, N. Stock, Chem. – Eur. J. 2018, 24, 2173.
| Crossref | GoogleScholarGoogle Scholar | 29227561PubMed |
[20] (a) S.-H. Lo, C.-H. Chien, Y.-L. Lai, C.-C. Yang, J. J. Lee, D. S. Raja, C.-H. Lin, J. Mater. Chem. A Mater. Energy Sustain. 2013, 1, 324.
| Crossref | GoogleScholarGoogle Scholar |
(b) K. Barthelet, J. Marrot, G. Férey, D. Riou, Chem. Commun. 2004, 520.
| Crossref | GoogleScholarGoogle Scholar |
(c) Q. Yang, S. Vaesen, M. Vishnuvarthan, F. Ragon, C. Serre, A. Vimont, M. Daturi, G. De Weireld, G. Maurin, J. Mater. Chem. 2012, 22, 10210.
| Crossref | GoogleScholarGoogle Scholar |
[21] (a) H. Reinsch, S. Waitschat, S. M. Chavan, K. P. Lillerud, N. Stock, Eur. J. Inorg. Chem. 2016, 4490.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. Lammert, M. T. Wharmby, S. Smolders, B. Bueken, A. Lieb, K. A. Lomachenko, D. De Vos, N. Stock, Chem. Commun. 2015, 12578.
| Crossref | GoogleScholarGoogle Scholar |
[22] (a) G. Wißmann, A. Schaate, S. Lilienthal, I. Bremer, A. M. Schneider, P. Behrens, Microporous Mesoporous Mater. 2012, 152, 64.
| Crossref | GoogleScholarGoogle Scholar |
(b) O. V. Gutov, S. Molina, E. C. Escudero-Adán, A. Shafir, Chem. – Eur. J. 2016, 22, 13582.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke, P. Behrens, Chem. – Eur. J. 2011, 17, 6643.
| Crossref | GoogleScholarGoogle Scholar |
[23] (a) S.-H. Lo, C.-H. Chien, Y.-L. Lai, C.-C. Yang, J. J. Lee, D. S. Raja, C.-H. Lin, J. Mater. Chem. A Mater. Energy Sustain. 2013, 1, 324.
| Crossref | GoogleScholarGoogle Scholar |
(b) E. D. Bloch, D. Britt, C. Lee, C. J. Doonan, F. J. Uribe-Romo, H. Furukawa, J. R. Long, O. M. Yaghi, J. Am. Chem. Soc. 2010, 132, 14382.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. W. B. Teo, A. Chakraborty, S. Kayal, Microporous Mesoporous Mater. 2018, 272, 109.
| Crossref | GoogleScholarGoogle Scholar |
(d) W. Liang, L. Li, J. Hou, N. D. Shepherd, T. D. Bennett, D. M. D’Alessandro, V. Chen, Chem. Sci. 2018, 9, 3508.
| Crossref | GoogleScholarGoogle Scholar |
[24] A. De Lorenzi, S. Giorgianni, R. Bini, Mol. Phys. 1999, 96, 101.
[25] (a) G. C. Shearer, S. Chavan, S. Bordiga, S. Svelle, U. Olsbye, K. P. Lillerud, Chem. Mater. 2016, 28, 3749.
| Crossref | GoogleScholarGoogle Scholar |
(b) G. C. Shearer, S. Chavan, J. Ethiraj, J. G. Vitillo, S. Svelle, U. Olsbye, C. Lamberti, S. Bordiga, K. P. Lillerud, Chem. Mater. 2014, 26, 4068.
| Crossref | GoogleScholarGoogle Scholar |
[26] E. Papirer, R. Lacroix, J.-B. Donnet, G. Nan, P. Fioux, Carbon 1995, 33, 63.
| Crossref | GoogleScholarGoogle Scholar |
[27] M. R. Alexander, G. E. Thompson, G. Beamson, Surf. Interface Anal. 2000, 29, 468.
| Crossref | GoogleScholarGoogle Scholar |
[28] N. Tannert, S.-J. Ernst, C. Jansen, H.-J. Bart, S. K. Henninger, C. Janiak, J. Mater. Chem. A Mater. Energy Sustain. 2018, 6, 17706.
| Crossref | GoogleScholarGoogle Scholar |
[29] (a) M. Haouas, F. Taulelle, C. Martineau, Prog. Nucl. Magn. Reson. Spectrosc. 2016, 94–95, 11.
| Crossref | GoogleScholarGoogle Scholar | 27247283PubMed |
(b) P. Soubayrol, G. Dana, Magn. Reson. Chem. 1996, 34, 638.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Muller, W. Gessner, Chem. Phys. Lett. 1981, 79, 59.
| Crossref | GoogleScholarGoogle Scholar |
[30] A. W. Thornton, R. Barbarao, A. Jain, F. Trouselet, F.-X. Coudert, Dalton Trans. 2016, 4352.
| Crossref | GoogleScholarGoogle Scholar | 26733113PubMed |
[31] M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S. W. Sing, Pure Appl. Chem. 2015, 87, 1051.
| Crossref | GoogleScholarGoogle Scholar |
[32] M. P. Suh, H. J. Park, T. K. Prasad, D.-W. Lim, Chem. Rev. 2012, 112, 782.
| Crossref | GoogleScholarGoogle Scholar | 22191516PubMed |
[33] G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, G. Terraneo, Chem. Rev. 2016, 116, 2478.
| Crossref | GoogleScholarGoogle Scholar | 26812185PubMed |
[34] (a) Q. Wang, J. Bai, Z. Lu, Y. Pan, X. You, Chem. Commun. 2016, 443.
| Crossref | GoogleScholarGoogle Scholar |
(b) Q.-G. Zhai, X. Bu, X. Zhao, D.-S. Li, P. Feng, Acc. Chem. Res. 2017, 50, 407.
| Crossref | GoogleScholarGoogle Scholar |