Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis and Characterisation of Helicate and Mesocate Forms of a Double-Stranded Diruthenium(ii) Complex of a Di(terpyridine) Ligand

Kate L. Flint A , J. Grant Collins B , Siobhan J. Bradley C , Trevor A. Smith C , Christopher J. Sumby A and F. Richard Keene A D
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.

B School of Physical, Environmental and Mathematical Sciences, UNSW Canberra, Australian Defence Force Academy, Canberra, ACT 2600, Australia.

C ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Vic. 3010, Australia.

D Corresponding author. Email: richard.keene@adelaide.edu.au

Australian Journal of Chemistry 72(10) 762-768 https://doi.org/10.1071/CH19220
Submitted: 13 May 2019  Accepted: 30 May 2019   Published: 1 July 2019

Abstract

A diruthenium(ii) complex involving the di(terpyridine) ligand 1,2-bis{5-(5″-methyl-2,2′:6′,2″-terpyridinyl)}ethane was synthesised by heating an equimolar ratio of RuCl3 and the ligand under reflux conditions in ethylene glycol for 3 days, realising double-stranded helicate and mesocate forms which were chromatographically separated. The two species were obtained in relatively low yield (each ~7–9 %) from the reaction mixture. X-Ray structural studies revealed differences in the cavity sizes of the two structures, with the helicate structure having a significantly smaller cavity. Furthermore, the helicate and mesocate forms pack with notably different arrangements of the structures with the helicate having large solvent and anion filled pores. 1D/2D NMR studies revealed rigidity in the mesocate structure relative to that of the helicate, such that the –CH2CH2– signal was split in the former and appeared as a singlet in the latter. In a manner analogous to the behaviour of the parent [Ru(tpy)2]2+ coordination moiety (tpy = 2,2′:6′,2″-terpyridine), photophysical studies indicated that both the helicate and mesocate forms were non-emissive at ~610 nm at room temperature, but at 77 K in n-butyronitrile, both isomers showed emission at ~610 nm (λex 472 nm). However, the temporal emission characteristics were very different: time-resolved studies showed the emission of the helicate species decayed with a dominant emission lifetime of ~10 μs (similar to the emissive properties of free [Ru(tpy)2]2+ under the same conditions), whereas for the mesocate the emission lifetime was at least three orders of magnitude lower (~4 ns).


References

[1]  M. Albrecht, Chem. Rev. 2001, 101, 3457.
         | Crossref | GoogleScholarGoogle Scholar | 11840991PubMed |

[2]  J. M. Lehn, A. Rigault, J. Siegel, J. Harrowfield, B. Chevrier, D. Moras, Proc. Natl. Acad. Sci. USA 1987, 84, 2565.
         | Crossref | GoogleScholarGoogle Scholar | 3472223PubMed |

[3]  X. Li, A. K. Gorle, M. K. Sundaraneedi, F. R. Keene, J. G. Collins, Coord. Chem. Rev. 2018, 375, 134.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  J. D. Crane, J. P. Sauvage, New J. Chem. 1992, 16, 649.

[5]  P. K. K. Ho, K. K. Cheung, C. M. Che, Chem. Commun. 1996, 1197.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  U. McDonnell, M. R. Hicks, M. J. Hannon, A. Rodger, J. Inorg. Biochem. 2008, 102, 2052.
         | Crossref | GoogleScholarGoogle Scholar | 18664401PubMed |

[7]  A. C. G. Hotze, B. M. Kariuki, M. J. Hannon, Angew. Chem. Int. Ed. 2006, 45, 4839.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) G. I. Pascu, A. C. G. Hotze, C. Sanchez-Cano, B. M. Kariuki, M. J. Hannon, Angew. Chem. Int. Ed. 2007, 46, 4374.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) L. Cardo, I. Nawroth, P. J. Cail, J. A. McKeating, M. J. Hannon, Sci. Rep. 2018, 8, 13342.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  C. R. K. Glasson, G. V. Meehan, J. K. Clegg, L. F. Lindoy, J. A. Smith, F. R. Keene, C. Motti, Chem. – Eur. J. 2008, 14, 10535.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  S. V. Kumar, W. K. C. Lo, H. J. L. Brooks, J. D. Crowley, Inorg. Chim. Acta 2015, 425, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  S. J. Allison, D. Cooke, F. S. Davidson, P. I. P. Elliott, R. A. Faulkner, H. B. S. Griffiths, O. J. Harper, O. Hussain, P. J. Owen-Lynch, R. M. Phillips, C. R. Rice, S. L. Shepherd, R. T. Wheelhouse, Angew. Chem. Int. Ed. 2018, 57, 9799.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  G. Rapenne, C. Dietrich-Buchecker, J. P. Sauvage, J. Am. Chem. Soc. 1999, 121, 994.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  G. Rapenne, B. T. Patterson, J. P. Sauvage, F. R. Keene, Chem. Commun. 1999, 1853.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  I. P. Evans, A. Spencer, G. Wilkinson, J. Chem. Soc., Dalton Trans. 1973, 204.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  P. Bernhard, H. B. Buergi, J. Hauser, H. Lehmann, A. Ludi, Inorg. Chem. 1982, 21, 3936.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  J. C. Coll, B. F. Bowden, J. Nat. Prod. 1986, 49, 934.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  B. Sun, H. M. Southam, J. A. Butler, R. K. Poole, A. Burgun, A. Tarzia, F. R. Keene, J. G. Collins, Dalton Trans. 2018, 47, 2422.
         | Crossref | GoogleScholarGoogle Scholar | 29379923PubMed |

[18]  It is noted that for a bis(2,2′:6′,2″-terpyridine) metal centre, [M(tpy)2]n+, the molecule possesses C2v point group symmetry and is therefore achiral. While the title complexes in this study possess such a bis(tridentate) immediate coordination environment, it is noted that the ‘tpy’ groups are unsymmetrically substituted with a methyl group in the 5″-position of the ‘outer’ pyridine ring, and the ethyl bridge to the other tridentate unit in the 5-position of the ‘inner’ pyridine ring. This substitution pattern means the bis(tridentate) coordination moieties are asymmetric and therefore each metal centre will have a chirality. The chirality can be defined by the ‘bis(bipyridine)’ configuration using the two ‘outer’ pyridine rings of the tpy moieties – in which case the helicate will have ΔΔ or ΛΛ configurations (ΔΔ in Fig. 2), and the mesocate will have a ΛΔ configuration (Λ at top in Fig. 2).

[19]  A. Spek, Acta Crystallogr. C 2015, 71, 9.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  Z. Zhang, D. Dolphin, Chem. Commun. 2009, 6931.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, A. von Zelewsky, Coord. Chem. Rev. 1988, 84, 85.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  A. Amini, A. Harriman, A. Mayeux, Phys. Chem. Chem. Phys. 2004, 6, 1157.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  R. Lakshmanan, N. C. Shivaprakash, S. Sindhu, J. Fluoresc. 2018, 28, 173.
         | Crossref | GoogleScholarGoogle Scholar | 28956219PubMed |

[24]  W. L. F. Armarego, C. Chai, in Purification of Laboratory Chemicals (7th edn) (Eds W. L. F. Armarego, C. Chai) 2013, pp. 103–554 (Butterworth-Heinemann: Boston, MA).

[25]  (a) U. S. Schubert, C. Eschbaumer, M. Heller, Org. Lett. 2000, 2, 3373.
         | Crossref | GoogleScholarGoogle Scholar | 11029214PubMed |
      (b) T. Seckin, I. Özdemir, S. Köytepe, N. Gürbüz, J. Inorg. Organomet. Polym. 2009, 19, 143.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  D. Aragao, J. Aishima, H. Cherukuvada, R. Clarken, M. Clift, N. P. Cowieson, D. J. Ericsson, C. L. Gee, S. Macedo, N. Mudie, S. Panjikar, J. R. Price, A. Riboldi-Tunnicliffe, R. Rostan, R. Williamson, T. T. Caradoc-Davies, J. Synchrotron Radiat. 2018, 25, 885.
         | Crossref | GoogleScholarGoogle Scholar | 29714201PubMed |

[27]  G. Sheldrick, Acta Crystallogr. Sect. A 1990, 46, 467.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  G. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  G. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  L. J. Barbour, J. Supramol. Chem. 2001, 1, 189.
         | Crossref | GoogleScholarGoogle Scholar |