Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Zinc-Containing Coordination Polymer as a Suitable Precursor for Solid State Synthesis of ZnO

Maryam Mohammadikish A C , Zohreh Zafari A and Susan Torabi B
+ Author Affiliations
- Author Affiliations

A Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran.

B Deputy of Food and Drug Control, Shiraz University of Medical Science, Shiraz 71345, Iran.

C Corresponding author. Email: mohammadikish@khu.ac.ir

Australian Journal of Chemistry 72(9) 693-698 https://doi.org/10.1071/CH19026
Submitted: 23 January 2019  Accepted: 23 May 2019   Published: 21 June 2019

Abstract

Uniform zinc-containing infinite coordination polymer (ICP) nanoparticles were achieved via a straightforward and rapid precipitation method in 5 min, from a bi-thioglycolate functionalized salpn ligand (salpn = N,N′-bis(salicylidene)-1,3-propanediamine) as linker and zinc acetate. Characterization of the resulting product was performed by CHN elemental analysis, inductively coupled plasma–optical emission spectroscopy, FT-IR spectroscopy, thermogravimetric analysis, electron microscopies (FE-SEM and HR-TEM), and photoluminescence spectroscopy. Elemental analyses verified the proposed structure for the ICP with a 1 : 2 ratio of the salpn type ligand and Zn2+ ion. FE-SEM, TEM, and AFM analyses unveiled the existence of nanoparticles with diameters of ~30 nm. PL spectroscopy showed a blue shift in emission peak of the ICP with regards to the organic ligand. The obtained ICP was utilized as a precursor to synthesize ZnO nanoparticles with wurtzite structure. An increase in bandgap of the prepared ZnO nanoparticles was observed in comparison with bulk ZnO as a result of quantum confinement of photogenerated electron–hole pairs. This method can be exploited for the synthesis of other coordination polymer micro/nanostructures.


References

[1]  D. Farrusseng, S. Aguado, C. Pinel, Angew. Chem. Int. Ed. 2009, 48, 7502.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  W. L. Leong, J. J. Vittal, Chem. Rev. 2011, 111, 688.
         | Crossref | GoogleScholarGoogle Scholar | 20804195PubMed |

[3]  D. Farrusseng, Metal-Organic Frameworks: Applications from Catalysis to Gas Storage 2011 (Wiley VCH Verlag & Co. KGaA: Weinheim, Germany.).

[4]  R. Wu, X. Qian, F. Yu, H. Liu, K. Zhou, J. Wei, Y. Huang, J. Mater. Chem. A Mater. Energy Sustain. 2013, 1, 11126.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  Y.-L. Liu, K.-F. Yue, B.-H. Shan, L.-L. Xu, C.-J. Wang, Y.-Y. Wang, Inorg. Chem. Commun. 2012, 17, 30.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  Y.-S. Bae, O. K. Farha, A. M. Spokoyny, C. A. Mirkin, J. T. Hupp, R. Q. Snurr, Chem. Commun. 2008, 4135.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  O. K. Farha, A. M. Spokoyny, K. L. Mulfort, S. Galli, J. T. Hupp, C. A. Mirkin, Small 2009, 5, 1727.
         | Crossref | GoogleScholarGoogle Scholar | 19367598PubMed |

[8]  O. K. Farha, A. M. Spokoyny, K. L. Mulfort, M. F. Hawthorne, C. A. Mirkin, J. T. Hupp, J. Am. Chem. Soc. 2007, 129, 12680.
         | Crossref | GoogleScholarGoogle Scholar | 17900124PubMed |

[9]  M. Oh, C. A. Mirkin, Nature 2005, 438, 651.
         | Crossref | GoogleScholarGoogle Scholar | 16319888PubMed |

[10]  X. Sun, S. Dong, E. Wang, J. Am. Chem. Soc. 2005, 127, 13102.
         | Crossref | GoogleScholarGoogle Scholar | 16173711PubMed |

[11]  X. Wang, R. McHale, Macromol. Rapid Commun. 2010, 31, 331.
         | Crossref | GoogleScholarGoogle Scholar | 21590911PubMed |

[12]  X. Zhang, M. A. Ballem, M. Ahrén, A. Suska, P. Bergman, K. Uvdal, J. Am. Chem. Soc. 2010, 132, 10391.
         | Crossref | GoogleScholarGoogle Scholar | 20614891PubMed |

[13]  K. H. Park, K. Jang, S. U. Son, D. A. Sweigart, J. Am. Chem. Soc. 2006, 128, 8740.
         | Crossref | GoogleScholarGoogle Scholar | 16819862PubMed |

[14]  S. Jung, M. Oh, Angew. Chem. Int. Ed. 2008, 47, 2049.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  M. Salavati-Niasari, N. Mir, F. Davar, J. Alloys Compd. 2009, 476, 908.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, A. J. Heeger, Adv. Mater. 2011, 23, 1679.
         | Crossref | GoogleScholarGoogle Scholar | 21472797PubMed |

[17]  W. I. Park, J. S. Kim, G.-C. Yi, M. Bae, H.-J. Lee, Appl. Phys. Lett. 2004, 85, 5052.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, I. Hussain, Materials 2010, 3, 2643.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  D. Barreca, D. Bekermann, E. Comini, A. Devi, R. A. Fischer, A. Gasparotto, C. Maccato, G. Sberveglieri, E. Tondello, Sens. Actuators B Chem. 2010, 149, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  M. Soltaninezhad, A. Aminifar, Int. J. Nanodimens. 2011, 2, 137.

[21]  F. Soofivand, M. Salavati-Niasari, F. Mohandes, Mater. Lett. 2013, 98, 55.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  B. Liu, X. Zhang, H. Shioyama, T. Mukai, T. Sakai, Q. Xu, J. Power Sources 2010, 195, 857.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  A. K. Babaheydari, M. Salavati-Niasari, A. Khansari, Particuology 2012, 10, 759.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  Z. Fereshteh, M. Salavati-Niasari, Adv. Colloid Interface Sci. 2017, 243, 86.
         | Crossref | GoogleScholarGoogle Scholar | 28314438PubMed |

[25]  S. Jung, W. Cho, H. J. Lee, M. Oh, Angew. Chem. 2009, 121, 1487.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  M. Mohammadikish, J. Cryst. Growth 2015, 431, 39.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  M. Mohammadikish, M. Talebi, Powder Technol. 2017, 313, 169.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  M. Asadi, B. Hemmateenejad, M. Mohammadikish, J. Coord. Chem. 2010, 63, 124.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  M. Albrecht, M. Lutz, A. L. Spek, G. van Koten, Nature 2000, 406, 970.
         | Crossref | GoogleScholarGoogle Scholar | 10984046PubMed |

[30]  M. Mohammadikish, A. Ahmadvand-Akradi, Inorg. Chem. Commun. 2017, 78, 48.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  W. Lin, W. J. Rieter, K. M. Taylor, Angew. Chem. Int. Ed. 2009, 48, 650.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  F. Ding, Y. G. Qi, Y. Xu, P. P. Yang, Y. H. Zhou, L. L. Zhu, Z. Anorg. Allg. Chem. 2015, 641, 1906.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  L. Ratke, P. W. Voorhees, Growth and Coarsening: Ostwald Ripening in Material Processing 2013 (Springer Science & Business Media: New York, NY).

[34]  P. C. Ford, A. Vogler, Acc. Chem. Res. 1993, 26, 220.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  S.-j. Park, W. Cho, M. Oh, CrystEngComm 2010, 12, 1060.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  L. Guo, Y. L. Ji, H. Xu, P. Simon, Z. Wu, J. Am. Chem. Soc. 2002, 124, 14864.
         | Crossref | GoogleScholarGoogle Scholar | 12475325PubMed |

[37]  L. Hu, J. Yan, M. Liao, H. Xiang, X. Gong, L. Zhang, X. Fang, Adv. Mater. 2012, 24, 2305.
         | Crossref | GoogleScholarGoogle Scholar | 22467271PubMed |

[38]  J. Tauc, Mater. Res. Bull. 1968, 3, 37.
         | Crossref | GoogleScholarGoogle Scholar |