Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Friedel–Crafts Chemistry. Part 53. Divergent and Diversity-Oriented Synthesis of Condensed Indole Scaffolds via Friedel–Crafts Ring Closure Approach

Hassan A. K. Abd El-Aal A B and Ali A. Khalaf A
+ Author Affiliations
- Author Affiliations

A Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.

B Corresponding author. Email: hassankotb33@yahoo.com

Australian Journal of Chemistry 72(4) 276-287 https://doi.org/10.1071/CH18537
Submitted: 31 October 2018  Accepted: 6 December 2018   Published: 23 January 2019

Abstract

A series of indole-fused medium-sized N-heterocyclic systems 10a–h were prepared from laboratory-synthesized indole-based esters 9a–h via intramolecular Friedel–Crafts cyclizations induced by both trifluoromethanesulfonic acid and AlCl3/CH3NO2 catalysts under suitable conditions. The synthetic sequence to precursors 9a–h that started from simple N-methylindole-2-carboxylic acid involved conversion to aminoindoles 2a, b, reaction with α,β-unsaturated acid chlorides to yield acyclic amides 5a–d, ring closure to tricyclic lactams 6a–d, and carbonyl reduction to respective pyrido and azepino tricyclic amines 7a–d, which finally underwent N-alkylations with α- or β-haloesters to produce the required ester precursors. The structures of synthesized compounds without stereochemical implications are established using both spectral and analytical data.


References

[1]  (a) B.-C. Wang, Y.-N. Wang, M.-M. Zhang, W.-J. Xiao, L.-Q. Lu, Chem. Commun. 2018, 3154.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) D. V. Vorobyeva, S. N. Osipov, Synthesis 2018, 227.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Fujiwara, J. A. Dixon, O. F. Hara, E. D. Funder, D. D. Dixon, R. A. Rodriguez, R. D. Baxter, B. Herle, N. Sach, M. R. Collins, Y. Ishihara, P. S. Baran, Nature 2012, 492, 95.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) N. Gupta, D. Goyal, Chem. Heterocycl. Compd. 2015, 51, 4.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) F. M. Miloserdov, M. S. Kirillova, M. E. Muratore, A. M. Echavarren, J. Am. Chem. Soc. 2018, 140, 5393.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) A. Yen, M. Lautens, Org. Lett. 2018, 20, 4323.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) M. M. Nebe, S. Zinn, T. Opatz, Org. Biomol. Chem. 2016, 14, 7084.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) H. Kandemir, I. Sengul, C. Gardner, E. Werry, M. Barron, M. Kassiou, N. Kumar, D. Black, Heterocycles 2016, 93, 333.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) M. Silvi, R. Schrof, A. Noble, V. K. Aggarwal, Chem. – Eur. J. 2018, 24, 4279.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) M. Matsumura, A. Muranaka, R. Kurihara, M. Kanai, K. Yoshida, N. Kakusawa, D. Hashizume, M. Uchiyama, S. Yasuike, Tetrahedron 2016, 72, 8085.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) E. Kelly, Br. J. Pharmacol. 2013, 169, 1430.
         | Crossref | GoogleScholarGoogle Scholar | 23646826PubMed |
         (b) See pp. 377–378 in: P. M. Dewick, Medicinal Natural Products: A Biosynthetic Approach, 3rd edn 2009 (John Wiley & Sons: Chichester).
      (c) S. Born, A. Levit, M. Y. Niv, W. Meyerhof, M. Behrens, J. Neurosci. 2013, 33, 201.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) T. Herraiz, D. González, C. Ancín-Azpilicueta, V. J. Arán, H. Guillén, Food Chem. Toxicol. 2010, 48, 839.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) E. S. Hara, M. Ono, S. Kubota, W. Sonoyama, Y. Oida, T. Hattori, T. Nishida, T. Furumatsu, T. Ozaki, M. Takigawa, T. Kuboki, Biochimie 2013, 95, 374.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  X. Y. Mak, A. L. Crombie, R. L. Danheiser, J. Org. Chem. 2011, 76, 1852.
         | Crossref | GoogleScholarGoogle Scholar | 21322545PubMed |

[4]  R. S. Upadhayaya, S. V. Lahore, A. Y. Sayyed, S. S. Dixit, P. D. Shinde, J. Chattopadhyaya, Org. Biomol. Chem 2010, 8, 2180.
         | Crossref | GoogleScholarGoogle Scholar | 20401395PubMed |

[5]  L.-Q. Lu, J.-R. Chen, W.-J. Xiao, Acc. Chem. Res. 2012, 45, 1278.
         | Crossref | GoogleScholarGoogle Scholar | 22577988PubMed |

[6]  A. V. Gulevich, A. S. Dudnik, N. Chernyak, V. Gevorgyan, Chem. Rev. 2013, 113, 3084.
         | Crossref | GoogleScholarGoogle Scholar | 23305185PubMed |

[7]  L. M. Bishop, J. E. Barbarow, R. G. Bergman, D. Trauner, Angew. Chem. Int. Ed. 2008, 47, 8100.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  V. V. Kouznetsov, B. A. R. Romero, L. A. Saavedra, Synthesis 2009, 4219.

[9]  M. A. Battiste, P. M. Pelphrey, D. L. Wright, Chem. – Eur. J. 2006, 12, 3438.
         | Crossref | GoogleScholarGoogle Scholar | 16402402PubMed |

[10]  T. Itoh, T. Mase, Org. Lett. 2007, 9, 3687.
         | Crossref | GoogleScholarGoogle Scholar | 17685625PubMed |

[11]  S. L. G. Ayala, E. Stashenko, A. Palma, A. Bahsas, J. M. Amaro-Luis, Synlett 2006, 2275.

[12]  Y. Noguchi, T. Hirose, Y. Furuya, A. Ishiyama, K. Otoguro, S. Omura, T. Sunazuka, Tetrahedron Lett. 2012, 53, 1802.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  D. L. Zvosec, S. W. Smith, R. Litonjua, R. E. Westfal, Clin. Toxicol. 2007, 45, 261.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) S. G. Stewart, C. H. Heath, E. L. Ghisalberti, Eur. J. Org. Chem. 2009, 1934.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) H. A. K. Abd El-Aal, A. A. Khalaf, T. I. El-Emary, ARKIVOC 2012, ix, 122.
      (c) M. Abou-Gharbia, U. Pater, J. Tokolics, M. Freed, Eur. J. Med. Chem. 1988, 23, 373.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) P. J. Harrington, L. S. Hegedus, K. F. McDaniel, J. Am. Chem. Soc. 1987, 109, 4335.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  H. Kusama, Y. Suzuki, J. Takaya, N. Iwasawa, Org. Lett. 2006, 8, 895.
         | Crossref | GoogleScholarGoogle Scholar | 16494468PubMed |

[16]  K. Cariou, B. Ronan, S. Mignani, L. Fensterbank, M. Malacria, Angew. Chem. Int. Ed. 2007, 46, 1881.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  G. Cera, S. Piscitelli, M. Chiarucci, G. Fabrizi, A. Goggiamani, R. S. Ramón, S. P. Nolan, M. Bandini, Angew. Chem. Int. Ed. 2012, 51, 9891.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  H. Suzuki, K. Shimpo, T. Yamazaki, S. Niwa, Y. Yokoyama, Y. Murakami, Heterocycles 1996, 42, 83.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  Y. Iwama, K. Okano, H. Tokuyama, J. Synth. Org. Chem. Jpn. 2013, 71, 926.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  M.-L. Bennasar, T. Roca, D. Garcia-Diaz, J. Org. Chem. 2007, 72, 4562.
         | Crossref | GoogleScholarGoogle Scholar | 17488126PubMed |

[21]  E. Wenkert, J. Am. Chem. Soc. 1962, 84, 98.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  L. Chacun-Lefevre, B. Joseph, J.-Y. Merour, Synlett 2001, 848.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  U. K. Sharma, N. Sharma, D. D. Vachhani, E. V. Van der Eycken, Chem. Soc. Rev. 2015, 44, 1836.
         | Crossref | GoogleScholarGoogle Scholar | 25652577PubMed |

[24]  P. Donets, E. Van der Eycken, Synthesis 2011, 2147.

[25]     (a) R. M. Roberts, A. A. Khalaf, Friedel–Crafts Chemistry: A Century of Discovery 1984 (Marcel Dekker: New York, NY) and references therein.
      (b) A. A. Khalaf, R. M. Roberts, J. Org. Chem. 1973, 38, 1388.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. A. K. Abd El-Aal, Aust. J. Chem. 2017, 70, 1082.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) H. A. K. Abd El-Aal, ARKIVOC 2018, iii, 45.
      (e) T. B. Poulsen, K. A. Jørgensen, Chem. Rev. 2008, 108, 2903.
         | Crossref | GoogleScholarGoogle Scholar |
         (f) L. R. C. Barclay, in Friedel–Crafts and Related Reactions (Ed. G. A. Olah) 1964, Vol. II, Ch. 22, pp. 786–960 (Wiley Interscience: New York, NY).

[26]  (a) R. S. Sagitullin, A. N. Kost, N. N. Borisov, Chem. Heterocycl. Compd. 1970, 6, 1127.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) A. N. Kost, G. A. Golubeva, Yu. N. Portnov, Dokl. Akad. Nauk SSSR 1971, 200, 342.

[27]  J. Elks, D. F. Elliott, B. A. Hems, J. Chem. Soc. 1944, 629.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  H Wolff, in Organic Reactions (Ed. R. Adams) 1946, Vol. 3, Ch. 8, pp. 307–336 (John Wiley and Sons: New York, NY).

[29]  (a) W. J. Brehm, J. Am. Chem. Soc. 1949, 71, 3541.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) N. A. Kogan, M. I. Vlasova, Chem. Heterocycl. Compd. 1976, 12, 1162.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  L. Panizzon, Helv. Chim. Acta 1941, 24, 24E.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  L. T. Smith, W. W. Prichard, J. Am. Chem. Soc. 1940, 62, 778.
         | Crossref | GoogleScholarGoogle Scholar |

[32]     (a) See pp. 222–237 in: R. Taylor, Electrophilic Aromatic Substitution 1990 (Wiley: New York, NY).
      (b) S. Choi, H. C. Brown, J. Am. Chem. Soc. 1963, 85, 2596.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  R. M. Silverstein, F. X. Webster, D. J. Kiemle, Spectrometric Identification of Organic Compounds, 7th edn 2005 (Wiley: Hoboken, NJ).

[34]  (a) M. Hosseini-Sarvari, G. Parhizgar, Green Chem. Lett. Rev. 2012, 5, 439.
         | Crossref | GoogleScholarGoogle Scholar |
         (b) See pp. 315–346 in: P. M. Dewick, Medicinal Natural Products 2002 (Wiley: Chichester).

[35]  C. Galli, L. Mandolini, Eur. J. Org. Chem. 2000, 3117.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  (a) F. De Simone, J. Andres, R. Torosantucci, J. Waser, Org. Lett. 2009, 11, 1023.
         | Crossref | GoogleScholarGoogle Scholar | 19199774PubMed |
         (b) J. Buckingham, K. H. Baggaley, A. D. Roberts, L. F. Szabó, Dictionary of Alkaloids, 2nd edn 2010 (CRC Press: Boca Raton, FL).
         (c) D. C. Oniciu, in Comprehensive Heterocyclic Chemistry III (Eds A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, R. J. K. Taylor) 2008, Vol. 14, pp. 1–47 (Pergamon Press: New York, NY) and references cited therein.
      (d) H. D. Dethe, D. R. Erande, A. Ranjan, J. Am. Chem. Soc. 2011, 133, 2864.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) Y. L. Zhao, Q. X. Lou, L. S. Wang, W. H. Hu, J. L. Zhao, Angew. Chem. Int. Ed. 2017, 56, 338.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) E. M. Stang, M. C. White, J. Am. Chem. Soc. 2011, 133, 14892.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) Y. Takayama, T. Yamada, S. Tatekabe, K. Nagasawa, Chem. Commun. 2013, 6519.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) I. Osante, M. I. Collado, E. Lete, N. Sotomayor, Eur. J. Org. Chem. 2001, 1267.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) S. Li, P. Chiu, Tetrahedron Lett. 2008, 49, 1741.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  (a) T. A. Kirkland, R. H. Grubbs, J. Org. Chem. 1997, 62, 7310.
         | Crossref | GoogleScholarGoogle Scholar | 11671845PubMed |
      (b) E. J. Corey, S. Daigneault, B. R. Dixon, Tetrahedron Lett. 1993, 34, 3675.
         | Crossref | GoogleScholarGoogle Scholar |