Effect of Rhenium(i) Complexation on Aza-Michael Additions to 5-Amino-1,10-Phenanthroline with [18F]Ethenesulfonyl Fluoride towards PET Optical Tracer Development
Mitchell A. Klenner A B F , Giancarlo Pascali A C F , Bo Zhang A D , Gianluca Ciancaleoni E , Massimiliano Massi B and Benjamin H. Fraser AA Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2229, Australia.
B Department of Chemistry, Curtin University, Bentley, WA 6102, Australia.
C Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia.
D School of Chemistry, Monash University, Melbourne, Vic. 3800, Australia.
E Dipartimento di Chimica e Chimica Industriale Università di Pisa, Pisa 56127, Italy.
F Corresponding authors. Email: mitchk@ansto.gov.au; gianp@ansto.gov.au
Australian Journal of Chemistry 72(4) 288-294 https://doi.org/10.1071/CH18512
Submitted: 17 October 2018 Accepted: 10 December 2018 Published: 14 January 2019
Abstract
Conjugations with the recently developed [18F]ethenesulfonyl fluoride ([18F]ESF) were performed on 5-amino-1,10-phenanthroline, in its free form and coordinated to a rhenium(i) tricarbonyl complex, as a means of radiosynthesizing dual-modal optical and positron emission tomography (PET) tracers. The Michael-donating ability of the aromatic amine was noticeably perturbed on coordination with the rhenium(i) centre, resulting in decreased radiochemical yields from 34 %, in the case of the free ligand, to 1 %. We attribute the decreased nucleophilicity of the amine to metal deactivation from the electron-withdrawing feature of the rhenium(i) tricarbonyl centre, based on spectroscopic and computational evidence, thus highlighting this effect as a crucial parameter in designing late-stage metal coordination methods employing related aza-Michael additions. Photophysical analyses were also performed on the ESF-conjugated rhenium(i) complex, exhibiting a longer decay lifetime from the triplet metal-to-ligand charge transfer excited state when compared with the non-conjugated analogue.
References
[1] H. Chen, R. Hong, Z. Li, W. Zhu, J. Chen, Y. Zhang, B. Jiang, Org. Biomol. Chem. 2017, 15, 7339.| Crossref | GoogleScholarGoogle Scholar | 28853470PubMed |
[2] A. M. Freedy, M. J. Matos, O. Boutureira, F. Corzana, A. Guerreiro, P. Akkapeddi, V. J. Somovilla, K. Nicholls, B. Xie, G. Jimenez-Oses, K. M. Brindle, A. A. Neves, G. J. L. Bernardes, J. Am. Chem. Soc. 2017, 139, 18365.
| Crossref | GoogleScholarGoogle Scholar | 29206031PubMed |
[3] J. L. Furman, M. Kang, S. Choi, Y. Cao, E. D. Wold, S. B. Sun, V. V. Smider, P. G. Schiltz, C. H. Kim, J. Am. Chem. Soc. 2014, 136, 8411.
| Crossref | GoogleScholarGoogle Scholar | 24846839PubMed |
[4] A. Narayanan, B. Maiti, P. De, React. Funct. Polym. 2015, 91–92, 35.
| Crossref | GoogleScholarGoogle Scholar |
[5] B. C. Ranu, S. Banerjee, Tetrahedron Lett. 2007, 48, 141.
| Crossref | GoogleScholarGoogle Scholar |
[6] H. D. Batey, A. C. Whitwood, A.-K. Duhme-Klair, Inorg. Chem. 2007, 46, 6516.
| Crossref | GoogleScholarGoogle Scholar | 17616125PubMed |
[7] C.-O. Ng, S.-W. Lai, H. Feng, S.-M. Yiu, C.-C. Ko, Dalton Trans. 2011, 10020.
| Crossref | GoogleScholarGoogle Scholar | 21879085PubMed |
[8] A. M. Fracaroli, K. Tashiro, O. M. Yaghi, Inorg. Chem. 2012, 51, 6437.
| Crossref | GoogleScholarGoogle Scholar | 22667815PubMed |
[9] M. A. Klenner, G. Pascali, B. Zhang, T. R. Sia, L. K. Spare, A. M. Krause-Heuer, J. R. Aldrich-Wright, I. Greguric, A. J. Guastella, M. Massi, B. H. Fraser, Chem. – Eur. J. 2017, 23, 6499.
| Crossref | GoogleScholarGoogle Scholar | 28332244PubMed |
[10] B. Zhang, G. Pascali, N. Wyatt, L. Matesic, M. A. Klenner, T. R. Sia, A. J. Guastella, M. Massi, A. J. Robinson, B. H. Fraser, J. Labelled Comp. Radiopharm. 2018, 61, 847.
| Crossref | GoogleScholarGoogle Scholar | 29924425PubMed |
[11] K. Y. Zhang, K. K.-S. Tso, M.-W. Louie, H.-W. Liu, K. K.-W. Lo, Organometallics 2013, 32, 5098.
| Crossref | GoogleScholarGoogle Scholar |
[12] V. Fernandez-Moreira, M. L. Ortego, C. F. Williams, M. P. Coogan, M. D. Villacampa, M. C. Gimeno, Organometallics 2012, 31, 5950.
| Crossref | GoogleScholarGoogle Scholar |
[13] K. K.-W. Lo, W.-K. Hui, D. C.-M. Ng, J. Am. Chem. Soc. 2002, 124, 9344.
| Crossref | GoogleScholarGoogle Scholar |
[14] C. A. Bader, R. D. Brooks, Y. S. Ng, A. Sorvina, M. V. Werrett, P. J. Wright, A. G. Anwer, D. A. Brooks, S. Stagni, S. Muzzioli, M. Silberstein, B. W. Skelton, E. M. Goldys, S. E. Plush, T. Shandala, M. Massi, RSC Adv. 2014, 4, 16345.
| Crossref | GoogleScholarGoogle Scholar |
[15] S. Ranjan, S.-Y. Lin, K.-C. Hwang, Y. Chi, W.-L. Ching, C.-S. Liu, Inorg. Chem. 2003, 42, 1248.
| Crossref | GoogleScholarGoogle Scholar | 12588163PubMed |
[16] A. Bessette, S. Nag, A. K. Pal, S. Derossi, G. S. Hanan, Supramol. Chem. 2012, 24, 595.
| Crossref | GoogleScholarGoogle Scholar |
[17] A. Świtlicka-Olszewska, T. Klemens, I. Nawrot, B. Muchura, R. Kruszynski, J. Lumin. 2016, 171, 166.
[18] C. Kefalidi, E. Koutsouri, L. Marchio, A. Zarkadoulas, S. Efstathiadou, C. A. Mitsopoulou, Polyhedron 2016, 110, 157.
| Crossref | GoogleScholarGoogle Scholar |
[19] P. J. Wright, S. Muzzioli, M. V. Werrett, P. Raiteri, B. W. Skelton, D. S. Silvester, S. Stagni, M. Massi, Organometallics 2012, 31, 7566.
| Crossref | GoogleScholarGoogle Scholar |
[20] R. G. LeBel, D. A. I. Goring, J. Chem. Eng. Data 1962, 7, 100.
| Crossref | GoogleScholarGoogle Scholar |
[21] F. Neese, WIREs Comput. Mol. Sci. 2012, 2, 73.
| Crossref | GoogleScholarGoogle Scholar |
[22] A. D. Becke, J. Chem. Phys. 1997, 107, 8554.
| Crossref | GoogleScholarGoogle Scholar |
[23] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
| Crossref | GoogleScholarGoogle Scholar | 20423165PubMed |
[24] R. A. Kendall, H. A. Früchtl, Theor. Chem. Acc. 1997, 97, 158.
| Crossref | GoogleScholarGoogle Scholar |
[25] P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270.
| Crossref | GoogleScholarGoogle Scholar |
[26] W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284.
| Crossref | GoogleScholarGoogle Scholar |
[27] P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299.
| Crossref | GoogleScholarGoogle Scholar |
[28] E. D. Glendening, C. R. Landis, F. Weinhold, J. Comput. Chem. 2013, 34, 1429.
| Crossref | GoogleScholarGoogle Scholar | 23483590PubMed |
[29] N. Salvi, L. Belpassi, F. Tarantelli, Chem. – Eur. J. 2010, 16, 7231.
| Crossref | GoogleScholarGoogle Scholar | 20468042PubMed |
[30] G. Ciancaleoni, L. Belpassi, F. Marchetti, Inorg. Chem. 2017, 56, 11266.
| Crossref | GoogleScholarGoogle Scholar | 28858489PubMed |
[31] M. Mitoraj, A. Michalak, J. Mol. Model. 2007, 13, 347.
| Crossref | GoogleScholarGoogle Scholar | 17024408PubMed |
[32] R. F. Nalewajski, A. M. Koster, K. Jug, Theor. Chim. Acta 1993, 85, 463.
| Crossref | GoogleScholarGoogle Scholar |
[33] R. F. Nalewajski, J. Mrozek, Int. J. Quantum Chem. 1994, 51, 187.
| Crossref | GoogleScholarGoogle Scholar |
[34] R. F. Nalewajski, J. Mrozek, A. Michalak, Int. J. Quantum Chem. 1997, 61, 589.
| Crossref | GoogleScholarGoogle Scholar |
[35] G. Bistoni, S. Rampino, F. Tarantelli, L. Belpassi, J. Chem. Phys. 2015, 142, 084112.
| Crossref | GoogleScholarGoogle Scholar | 25725717PubMed |
[36] M. De Santis, S. Rampino, H. M. Quiney, L. Belpassi, L. Storchi, J. Chem. Theory Comput. 2018, 14, 1286.
| Crossref | GoogleScholarGoogle Scholar | 29384673PubMed |
[37] A.-R. Allouche, J. Comput. Chem. 2011, 32, 174.
| Crossref | GoogleScholarGoogle Scholar | 20607691PubMed |
[38] S. Rampino, VIRT&L-COMM 2015, 7, 6.
[39] E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, F. Weinhold, NBO 6.0 2013 (Theoretical Chemistry Institute, University of Winsconsin: Madison, WI).