Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Influence of Surfactant on the Phase Transformation of Bi2O3 and its Photocatalytic Activity

Kasinathan Karthik A , K. R. Sunaja Devi A C , Dephan Pinheiro A and Sankaran Sugunan B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India.

B Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, Kerala, 682022, India.

C Corresponding author. Email: sunajadevi.kr@christuniversity.in

Australian Journal of Chemistry 72(4) 295-304 https://doi.org/10.1071/CH18446
Submitted: 6 September 2018  Accepted: 10 December 2018   Published: 23 January 2019

Abstract

Bismuth oxide with its unique narrow bandgap has gained significant attention in the field of photocatalysis. A new and efficient method to synthesise bismuth oxide with tuneable properties is proposed herein. A surfactant assisted modified sol–gel method is used to synthesise bismuth oxide with excellent photocatalytic activity for the degradation of Rhodamine B dye. Three different surfactants, namely polyethylene glycol-400, sodium lauryl sulfate, and cetyltrimethylammonium bromide (CTAB) have been used. The fabricated bismuth oxide nanoparticles were characterised by X-ray diffraction, IR, scanning electron microscopy, and UV-diffuse reflectance spectroscopy analysis. Evolution of both the α and β crystalline phases of bismuth oxide was observed. The bandgap of the synthesised bismuth oxides ranges from 2.03 to 2.37 eV. The CTAB assisted synthesised bismuth oxide with a bandgap of 2.19 eV showed the highest photocatalytic activity of 93.6 % under visible light for the degradation of Rhodamine B. This bismuth oxide based catalyst opens a new avenue for efficient photocatalysis for environmental remediation.


References

[1]  G. D. Bhowmick, M. T. Noori, I. Das, B. Neethu, M. M. Ghangrekar, A. Mitra, Int. J. Hydrogen Energy 2018, 43, 7501.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  Z.-F. Huang, L. Pan, J.-J. Zou, X. Zhang, L. Wang, Nanoscale 2014, 6, 14044.
         | Crossref | GoogleScholarGoogle Scholar | 25325232PubMed |

[3]  M. Aliabadi, T. Sagharigar, J. Appl. Environ. Biol. Sci. 2011, 1, 620.

[4]  W. Z. Tang, Z. Zhang, H. An, M. O. Quintana, D. F. Torres, Environ. Technol. 1997, 18, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  S. Lan, L. Liu, R. Li, Z. Leng, S. Gan, Ind. Eng. Chem. Res. 2014, 53, 3131.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  K. Jahan, S. Hoque, T. Ahmed, Water Environ. Res. 2012, 84, 1029.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  E. K. Dafnopatidou, G. P. Gallios, E. G. Tsatsaroni, N. K. Lazaridis, Ind. Eng. Chem. Res. 2007, 46, 2125.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  European Food Safety Authority (EFSA) EFSA J. 2005, 263, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  D. Kornbrust, T. Barfknecht, Environ. Mutagen. 1985, 7, 101.
         | Crossref | GoogleScholarGoogle Scholar | 3967633PubMed |

[10]  S. D. Richardson, C. S. Willson, K. A. Rusch, Ground Water 2004, 42, 678.
         | Crossref | GoogleScholarGoogle Scholar | 15457791PubMed |

[11]  N. Daneshvar, D. Salari, A. R. Khataee, J. Photochem. Photobiol. Chem. 2004, 162, 317.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  N. U. Silva, T. G. Nunes, M. S. Saraiva, M. S. Shalamzari, P. D. Vaz, O. C. Monteiro, C. D. Nunes, Appl. Catal. B 2012, 113–114, 180.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  S. Sood, A. Umar, S. Kumar Mehta, S. K. Kansal, Ceram. Int. 2015, 41, 3355.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  A. Cabot, A. Marsal, J. Arbiol, J. R. Morante, Sens. Actuators B 2004, 99, 74.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  J. Hu, G. Xu, J. Wang, J. Lv, X. Zhang, T. Xie, Z. Zheng, Y. Wu, Dalton Trans. 2015, 44, 5386.
         | Crossref | GoogleScholarGoogle Scholar | 25689541PubMed |

[16]  W. Raza, A. Khan, U. Alam, M. Muneer, D. Bahnemann, J. Mol. Struct. 2016, 1107, 39.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  Y. Yan, Z. Zhou, Y. Cheng, L. Qiu, C. Gao, J. Zhou, J. Alloys Compd. 2014, 605, 102.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  S. Jun, G. Yuan, H. Wei-Chang, J. Xi, Chin. Phys. B 2014, 23, 1.

[19]  H. Su, S. Cao, N. Xia, J. Appl. Electrochem. 2014, 44, 735.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  M. Mallahi, V. Mazinani, A. Shokuhfar, M. R. Vaezi, Int. J. Eng. Res. 2014, 3, 267.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  X. Gou, R. Li, G. Wang, Z. Chen, D. Wexler, Nanotechnology 2009, 20, 495501.
         | Crossref | GoogleScholarGoogle Scholar | 19893148PubMed |

[22]  R. Y. Hong, J. H. Li, L. L. Chen, D. Q. Liu, H. Z. Li, Y. Zheng, J. Ding, Powder Technol. 2009, 189, 426.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  J. Zhou, Y. Zhang, X. S. Zhao, A. K. Ray, Ind. Eng. Chem. Res. 2006, 45, 3503.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  J. K. Reddy, B. Srinivas, V. D. Kumari, ChemCatChem 2009, 1, 492.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  O. Madelung, U. Rössler, M. Schulz (Eds), in Non-Tetrahedrally Bonded Elements and Binary Compounds I, Landolt-Börnstein - Group III Condensed Matter Vol. 41C 1998, pp. 1–4 (Springer: Berlin). Available from: http://materials.springer.com/lb/docs/sm_lbs_978-3-540-31360-1_1058 (accessed 16 August 2018)

[26]  W. Li, Mater. Chem. Phys. 2006, 99, 174.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  L. Zhang, W. Wang, J. Yang, Z. Chen, W. Zhang, L. Zhou, S. Liu, Appl. Catal. A 2006, 308, 105.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  L. Liu, J. Jiang, S. Jin, Z. Xia, M. Tang, CrystEngComm 2011, 13, 2529.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  A. A. A. Ahmed, Z. A. Talib, M. Z. bin Hussein, A. Zakaria, J. Alloys Compd. 2012, 539, 154.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  H.-Y. Jiang, G. Liu, T. Wang, P. Li, J. Lin, J. Ye, RSC Adv. 2015, 5, 92963.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  L. Fan, Y. Li, X. Lin, J. Peng, G. Ju, S. Zhang, L. Chen, F. He, Y. Hu, RSC Adv. 2017, 7, 44908.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  Y. Wang, G. Ouyang, L. L. Wang, L. M. Tang, D. S. Tang, C. Q. Sun, Chem. Phys. Lett. 2008, 463, 383.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  A. Rajeswari, E. Jackcina Stobel Christy, A. Pius, J. Photochem. Photobiol. B 2018, 179, 7.
         | Crossref | GoogleScholarGoogle Scholar | 29289927PubMed |

[34]  A. Jaiswal, M. C. Chattopadhayaya, Desalin. Water Treat. 2009, 12, 127.

[35]  S. M. Ghoreishian, K. Badii, M. Norouzi, A. Rashidi, M. Montazer, M. Sadeghi, M. Vafaee, J. Taiwan Inst. Chem. Eng. 2014, 45, 2436.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  L. G. Devi, R. Kavitha, Mater. Chem. Phys. 2014, 143, 1300.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  A. Nakajima, H. Obata, Y. Kameshima, K. Okada, Catal. Commun. 2005, 6, 716.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  L. Chen, R. Huang, S. F. Yin, S. L. Luo, C. T. Au, Chem. Eng. J. 2012, 193–194, 123.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  Y. Peng, Q. G. Chen, D. Wang, H. Y. Zhou, A. W. Xu, CrystEngComm 2015, 17, 569.
         | Crossref | GoogleScholarGoogle Scholar |