Influence of Surfactant on the Phase Transformation of Bi2O3 and its Photocatalytic Activity
Kasinathan Karthik A , K. R. Sunaja Devi A C , Dephan Pinheiro A and Sankaran Sugunan BA Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029, India.
B Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, Kerala, 682022, India.
C Corresponding author. Email: sunajadevi.kr@christuniversity.in
Australian Journal of Chemistry 72(4) 295-304 https://doi.org/10.1071/CH18446
Submitted: 6 September 2018 Accepted: 10 December 2018 Published: 23 January 2019
Abstract
Bismuth oxide with its unique narrow bandgap has gained significant attention in the field of photocatalysis. A new and efficient method to synthesise bismuth oxide with tuneable properties is proposed herein. A surfactant assisted modified sol–gel method is used to synthesise bismuth oxide with excellent photocatalytic activity for the degradation of Rhodamine B dye. Three different surfactants, namely polyethylene glycol-400, sodium lauryl sulfate, and cetyltrimethylammonium bromide (CTAB) have been used. The fabricated bismuth oxide nanoparticles were characterised by X-ray diffraction, IR, scanning electron microscopy, and UV-diffuse reflectance spectroscopy analysis. Evolution of both the α and β crystalline phases of bismuth oxide was observed. The bandgap of the synthesised bismuth oxides ranges from 2.03 to 2.37 eV. The CTAB assisted synthesised bismuth oxide with a bandgap of 2.19 eV showed the highest photocatalytic activity of 93.6 % under visible light for the degradation of Rhodamine B. This bismuth oxide based catalyst opens a new avenue for efficient photocatalysis for environmental remediation.
References
[1] G. D. Bhowmick, M. T. Noori, I. Das, B. Neethu, M. M. Ghangrekar, A. Mitra, Int. J. Hydrogen Energy 2018, 43, 7501.| Crossref | GoogleScholarGoogle Scholar |
[2] Z.-F. Huang, L. Pan, J.-J. Zou, X. Zhang, L. Wang, Nanoscale 2014, 6, 14044.
| Crossref | GoogleScholarGoogle Scholar | 25325232PubMed |
[3] M. Aliabadi, T. Sagharigar, J. Appl. Environ. Biol. Sci. 2011, 1, 620.
[4] W. Z. Tang, Z. Zhang, H. An, M. O. Quintana, D. F. Torres, Environ. Technol. 1997, 18, 1.
| Crossref | GoogleScholarGoogle Scholar |
[5] S. Lan, L. Liu, R. Li, Z. Leng, S. Gan, Ind. Eng. Chem. Res. 2014, 53, 3131.
| Crossref | GoogleScholarGoogle Scholar |
[6] K. Jahan, S. Hoque, T. Ahmed, Water Environ. Res. 2012, 84, 1029.
| Crossref | GoogleScholarGoogle Scholar |
[7] E. K. Dafnopatidou, G. P. Gallios, E. G. Tsatsaroni, N. K. Lazaridis, Ind. Eng. Chem. Res. 2007, 46, 2125.
| Crossref | GoogleScholarGoogle Scholar |
[8] European Food Safety Authority (EFSA) EFSA J. 2005, 263, 1.
| Crossref | GoogleScholarGoogle Scholar |
[9] D. Kornbrust, T. Barfknecht, Environ. Mutagen. 1985, 7, 101.
| Crossref | GoogleScholarGoogle Scholar | 3967633PubMed |
[10] S. D. Richardson, C. S. Willson, K. A. Rusch, Ground Water 2004, 42, 678.
| Crossref | GoogleScholarGoogle Scholar | 15457791PubMed |
[11] N. Daneshvar, D. Salari, A. R. Khataee, J. Photochem. Photobiol. Chem. 2004, 162, 317.
| Crossref | GoogleScholarGoogle Scholar |
[12] N. U. Silva, T. G. Nunes, M. S. Saraiva, M. S. Shalamzari, P. D. Vaz, O. C. Monteiro, C. D. Nunes, Appl. Catal. B 2012, 113–114, 180.
| Crossref | GoogleScholarGoogle Scholar |
[13] S. Sood, A. Umar, S. Kumar Mehta, S. K. Kansal, Ceram. Int. 2015, 41, 3355.
| Crossref | GoogleScholarGoogle Scholar |
[14] A. Cabot, A. Marsal, J. Arbiol, J. R. Morante, Sens. Actuators B 2004, 99, 74.
| Crossref | GoogleScholarGoogle Scholar |
[15] J. Hu, G. Xu, J. Wang, J. Lv, X. Zhang, T. Xie, Z. Zheng, Y. Wu, Dalton Trans. 2015, 44, 5386.
| Crossref | GoogleScholarGoogle Scholar | 25689541PubMed |
[16] W. Raza, A. Khan, U. Alam, M. Muneer, D. Bahnemann, J. Mol. Struct. 2016, 1107, 39.
| Crossref | GoogleScholarGoogle Scholar |
[17] Y. Yan, Z. Zhou, Y. Cheng, L. Qiu, C. Gao, J. Zhou, J. Alloys Compd. 2014, 605, 102.
| Crossref | GoogleScholarGoogle Scholar |
[18] S. Jun, G. Yuan, H. Wei-Chang, J. Xi, Chin. Phys. B 2014, 23, 1.
[19] H. Su, S. Cao, N. Xia, J. Appl. Electrochem. 2014, 44, 735.
| Crossref | GoogleScholarGoogle Scholar |
[20] M. Mallahi, V. Mazinani, A. Shokuhfar, M. R. Vaezi, Int. J. Eng. Res. 2014, 3, 267.
| Crossref | GoogleScholarGoogle Scholar |
[21] X. Gou, R. Li, G. Wang, Z. Chen, D. Wexler, Nanotechnology 2009, 20, 495501.
| Crossref | GoogleScholarGoogle Scholar | 19893148PubMed |
[22] R. Y. Hong, J. H. Li, L. L. Chen, D. Q. Liu, H. Z. Li, Y. Zheng, J. Ding, Powder Technol. 2009, 189, 426.
| Crossref | GoogleScholarGoogle Scholar |
[23] J. Zhou, Y. Zhang, X. S. Zhao, A. K. Ray, Ind. Eng. Chem. Res. 2006, 45, 3503.
| Crossref | GoogleScholarGoogle Scholar |
[24] J. K. Reddy, B. Srinivas, V. D. Kumari, ChemCatChem 2009, 1, 492.
| Crossref | GoogleScholarGoogle Scholar |
[25] O. Madelung, U. Rössler, M. Schulz (Eds), in Non-Tetrahedrally Bonded Elements and Binary Compounds I, Landolt-Börnstein - Group III Condensed Matter Vol. 41C 1998, pp. 1–4 (Springer: Berlin). Available from: http://materials.springer.com/lb/docs/sm_lbs_978-3-540-31360-1_1058 (accessed 16 August 2018)
[26] W. Li, Mater. Chem. Phys. 2006, 99, 174.
| Crossref | GoogleScholarGoogle Scholar |
[27] L. Zhang, W. Wang, J. Yang, Z. Chen, W. Zhang, L. Zhou, S. Liu, Appl. Catal. A 2006, 308, 105.
| Crossref | GoogleScholarGoogle Scholar |
[28] L. Liu, J. Jiang, S. Jin, Z. Xia, M. Tang, CrystEngComm 2011, 13, 2529.
| Crossref | GoogleScholarGoogle Scholar |
[29] A. A. A. Ahmed, Z. A. Talib, M. Z. bin Hussein, A. Zakaria, J. Alloys Compd. 2012, 539, 154.
| Crossref | GoogleScholarGoogle Scholar |
[30] H.-Y. Jiang, G. Liu, T. Wang, P. Li, J. Lin, J. Ye, RSC Adv. 2015, 5, 92963.
| Crossref | GoogleScholarGoogle Scholar |
[31] L. Fan, Y. Li, X. Lin, J. Peng, G. Ju, S. Zhang, L. Chen, F. He, Y. Hu, RSC Adv. 2017, 7, 44908.
| Crossref | GoogleScholarGoogle Scholar |
[32] Y. Wang, G. Ouyang, L. L. Wang, L. M. Tang, D. S. Tang, C. Q. Sun, Chem. Phys. Lett. 2008, 463, 383.
| Crossref | GoogleScholarGoogle Scholar |
[33] A. Rajeswari, E. Jackcina Stobel Christy, A. Pius, J. Photochem. Photobiol. B 2018, 179, 7.
| Crossref | GoogleScholarGoogle Scholar | 29289927PubMed |
[34] A. Jaiswal, M. C. Chattopadhayaya, Desalin. Water Treat. 2009, 12, 127.
[35] S. M. Ghoreishian, K. Badii, M. Norouzi, A. Rashidi, M. Montazer, M. Sadeghi, M. Vafaee, J. Taiwan Inst. Chem. Eng. 2014, 45, 2436.
| Crossref | GoogleScholarGoogle Scholar |
[36] L. G. Devi, R. Kavitha, Mater. Chem. Phys. 2014, 143, 1300.
| Crossref | GoogleScholarGoogle Scholar |
[37] A. Nakajima, H. Obata, Y. Kameshima, K. Okada, Catal. Commun. 2005, 6, 716.
| Crossref | GoogleScholarGoogle Scholar |
[38] L. Chen, R. Huang, S. F. Yin, S. L. Luo, C. T. Au, Chem. Eng. J. 2012, 193–194, 123.
| Crossref | GoogleScholarGoogle Scholar |
[39] Y. Peng, Q. G. Chen, D. Wang, H. Y. Zhou, A. W. Xu, CrystEngComm 2015, 17, 569.
| Crossref | GoogleScholarGoogle Scholar |