Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

Crystal Polymorphism of 1-Butyl-3-methylimidazolium Hexafluorophosphate: Phase Diagram, Structure, and Dynamics

Takatsugu Endo A C , Kozo Fujii B and Keiko Nishikawa B C
+ Author Affiliations
- Author Affiliations

A Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto-fu 610-0394, Japan.

B Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan.

C Corresponding authors. Email: taendo@mail.doshisha.ac.jp; k.nishikawa@faculty.chiba-u.jp




Takatsugu Endo is a Bachelor of Engineering graduate of Chiba University and received his Ph.D. degree from Chiba University. He worked as a Research Fellow at Chiba University (Professor K. Nishikawa’s group) and the University of California, Davis (Professor S. Sen’s group) from 2009 to 2014. Then, he joined Professor K. Takahashi’s group at Kanazawa University as Assistant Professor. In 2017, he was appointed Associate Professor at Doshisha University. His research interests are in relationships between molecular structure/dynamics and the physical properties. He has been working in the field of physical chemistry of ionic liquids for more than 10 years.



Kozo Fujii has been a Project Researcher in the Nishikawa group at Chiba University since 2011. He received a M.S. degree from Kyusyu University in 1975 and his Ph.D. degree from Chiba University in 2014. He has more than 30 years of business experience as a chemist and management executive in the global business arena, in the FMCG (fast moving consumer goods) category in Germany and in Japan. His research interests are in physicochemical properties and dynamics of ionic liquids.



Keiko Nishikawa is a Research Professor in the Graduate School of Science at Chiba University and will be a Fellow at the Toyota Physical and Chemical Institute from 2019. She received her M.S. degree in 1974 and Ph.D. degree in 1981 from Tokyo University. She worked as an Assistant Professor at Gakusyuin University (1974–1991), an Associate Professor at Yokohama National University (1991–1996), and a Professor at Chiba University (1996–2014). Later, she became a Research Professor at Chiba University and an Inspector General at Japan Society for Promotion of Science (JSPS). She was the project leader of Grant-in-Aid for Scientific Research (KAKENHI) on Priority Areas ‘Science of Ionic Liquids’ (2005–2009). Her research interests are in physicochemical properties, structure and dynamics of ionic liquids as well as fluctuations of disordered material systems such as liquids, solutions, and supercritical fluids.

Australian Journal of Chemistry 72(2) 11-20 https://doi.org/10.1071/CH18422
Submitted: 23 August 2018  Accepted: 19 November 2018   Published: 18 December 2018

Abstract

The ionic liquid (IL), 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim]PF6), is one of the most representative ILs. Despite its relatively simple ion structure and popularity, [C4mim]PF6 shows complex and confusing thermal phase behaviours, which stem from crystal polymorphism associated with cation conformational change and large thermal hysteresis. To the best of our knowledge, [C4mim]PF6 is the most investigated IL in terms of phase diagram, whereas full understanding has not yet been achieved due to its complexity. Here we review the current status of understanding of the phase diagram and structure/dynamics of each crystalline phase. Presently, depending on temperature and pressure, five structurally different polymorphic crystals have been reported as α, β, γ, δ, and δ’ in addition to some unspecified phases implied by calorimetric studies. Particularly for the α, β and γ phases, the structure and dynamics are well investigated by Raman, NMR, and X-ray scattering techniques.


References

[1]  J. S. Wilkes, Green Chem. 2002, 4, 73.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  R. Hayes, G. G. Warr, R. Atkin, Chem. Rev. 2015, 115, 6357.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  O. Russina, F. Lo Celso, N. V. Plechkova, A. Triolo, J. Phys. Chem. Lett. 2017, 8, 1197.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  A. Basile, M. Hilder, F. Makhlooghiazad, C. Pozo-Gonzalo, D. R. MacFarlane, P. C. Howlett, M. Forsyth, Adv. Energy Mater. 2018, 8, 1703491.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  M. Deetlefs, K. R. Seddon, Green Chem. 2010, 12, 17.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A. Broker, R. D. Rogers, Green Chem. 2001, 3, 156.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  U. Domańska, A. Marciniak, J. Chem. Eng. Data 2003, 48, 451.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  G. J. Kabo, A. V. Blokhin, Y. U. Paulechka, A. G. Kabo, M. P. Shymanovich, J. W. Magee, J. Chem. Eng. Data 2004, 49, 453.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  E. Paulechka, T. Liavitskaya, A. V. Blokhin, J. Chem. Thermodyn. 2016, 102, 211.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  T. Endo, K. Nishikawa, Chem. Phys. Lett. 2013, 584, 79.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  T. Endo, T. Kato, K.-i. Tozaki, K. Nishikawa, J. Phys. Chem. B 2010, 114, 407.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  R. A. M. Faria, T. F. M. Vieira, C. I. Melo, E. Bogel-Łukasik, J. Chem. Eng. Data 2016, 61, 3116.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  S. K. Panja, N. Srivastava, J. Srivastava, N. E. Prasad, H. Noothalapati, S. Shigeto, S. Saha, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 194, 117.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  T. Endo, H. Murata, M. Imanari, N. Mizushima, H. Seki, K. Nishikawa, J. Phys. Chem. B 2012, 116, 3780.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  F. Nemoto, M. Kofu, O. Yamamuro, J. Phys. Chem. B 2015, 119, 5028.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  A. R. Choudhury, N. Winterton, A. Steiner, A. I. Cooper, K. A. Johnson, J. Am. Chem. Soc. 2005, 127, 16792.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  D. M. Fox, W. H. Awad, J. W. Gilman, P. H. Maupin, H. C. De Long, P. C. Trulove, Green Chem. 2003, 5, 724.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  J. Troncoso, C. A. Cerdeirin, Y. A. Sanmamed, L. Romani, L. P. N. Rebelo, J. Chem. Eng. Data 2006, 51, 1856.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  H. Jin, B. O’Hare, J. Dong, S. Arzhantsev, G. A. Baker, J. F. Wishart, A. J. Benesi, M. Maroncelli, J. Phys. Chem. B 2008, 112, 81.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  Z. H. Zhang, T. Cui, J. L. Zhang, H. Xiong, G. P. Li, L. X. Sun, F. Xu, Z. Cao, F. Li, J. J. Zhao, J. Therm. Anal. Calorim. 2010, 101, 1143.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  T. Endo, H. Masu, K. Fujii, T. Morita, H. Seki, S. Sen, K. Nishikawa, Cryst. Growth Des. 2013, 13, 5383.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  A. Triolo, A. Mandanici, O. Russina, V. Rodriguez-Mora, M. Cutroni, C. Hardacre, M. Nieuwenhuyzen, H.-J. Bleif, L. Keller, M. A. Ramos, J. Phys. Chem. B 2006, 110, 21357.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  Y. Yu, W. Beichel, G. Dlubek, R. Krause-Rehberg, M. Paluch, J. Pionteck, D. Pfefferkorn, S. Bulut, C. Friedrich, N. Pogodina, I. Krossing, Phys. Chem. Chem. Phys. 2012, 14, 6856.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  R. G. de Azevedo, J. M. S. S. Esperança, V. Najdanovic-Visak, Z. P. Visak, H. J. R. Guedes, M. N. da Ponte, L. P. N. Rebelo, J. Chem. Eng. Data 2005, 50, 997.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  L. Su, L. Li, Y. Hu, C. Yuan, C. Shao, S. Hong, J. Chem. Phys. 2009, 130, 184503.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  L. Su, M. Li, X. Zhu, Z. Wang, Z. Chen, F. Li, Q. Zhou, S. Hong, J. Phys. Chem. B 2010, 114, 5061.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  T. Takekiyo, N. Hatano, Y. Imai, H. Abe, Y. Yoshimura, High Press. Res. 2011, 31, 35.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  O. Russina, B. Fazio, C. Schmidt, A. Triolo, Phys. Chem. Chem. Phys. 2011, 13, 12067.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  L. Pison, M. F. Costa Gomes, A. A. H. Pádua, D. Andrault, S. Norman, C. Hardacre, M. C. C. Ribeiro, J. Chem. Phys. 2013, 139, 054510.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  M. Shigemi, T. Takekiyo, H. Abe, Y. Yoshimura, High Press. Res. 2013, 33, 229.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  H. Abe, T. Takekiyo, N. Hatano, M. Shigemi, N. Hamaya, Y. Yoshimura, J. Phys. Chem. B 2014, 118, 1138.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  Y. Imai, H. Abe, T. Goto, Y. Yoshimura, Y. Michishita, H. Matsumoto, Chem. Phys. 2008, 352, 224.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  Y. Imai, H. Abe, T. Goto, Y. Yoshimura, S. Kushiyama, H. Matsumoto, J. Phys. Chem. B 2008, 112, 9841.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  T. Endo, K.-i. Tozaki, T. Masaki, K. Nishikawa, Jpn. J. Appl. Phys. 2008, 47, 1775.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  A. Kojima, C. Ishii, K. Tozaki, S. Matsuda, T. Nakayama, N. Tsuada, Y. Yoshimura, H. Iwasaki, Rev. Sci. Instrum. 1997, 68, 2301.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  K.-i. Tozaki, H. Inaba, H. Hayashi, C. Quan, N. Nemoto, T. Kimura, Thermochim. Acta 2003, 397, 155.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  S. Wang, K. Tozaki, H. Hayashi, H. Inaba, J. Therm. Anal. Calorim. 2005, 79, 605.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  R. Ozawa, S. Hayashi, S. Saha, A. Kobayashi, H.-o. Hamaguchi, Chem. Lett. 2003, 32, 948.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  S. Hayashi, R. Ozawa, H.-o. Hamaguchi, Chem. Lett. 2003, 32, 498.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  E. A. Turner, C. C. Pye, R. D. Singer, J. Phys. Chem. A 2003, 107, 2277.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  S. Tsuzuki, A. A. Arai, K. Nishikawa, J. Phys. Chem. B 2008, 112, 7739.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  T. Endo, S. Hoshino, Y. Shimizu, K. Fujii, K. Nishikawa, J. Phys. Chem. B 2016, 120, 10336.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  S. M. Dibrov, J. K. Kochi, Acta Crystallogr. Sect. C: Struct. Chem. 2006, 62, o19.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  S. Saouane, S. E. Norman, C. Hardacre, F. P. A. Fabbiani, Chem. Sci. 2013, 4, 1270.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  S. Tsuzuki, H. Tokuda, M. Mikami, Phys. Chem. Chem. Phys. 2007, 9, 4780.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  W. M. Reichert, J. D. Holbrey, R. P. Swatloski, K. E. Gutowski, A. E. Visser, M. Nieuwenhuyzen, K. R. Seddon, R. D. Rogers, Cryst. Growth Des. 2007, 7, 1106.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  T. Endo, H. Murata, M. Imanari, N. Mizushima, H. Seki, S. Sen, K. Nishikawa, J. Phys. Chem. B 2013, 117, 326.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  A. Triolo, O. Russina, C. Hardacre, M. Nieuwenhuyzen, M. A. Gonzalez, H. Grimm, J. Phys. Chem. B 2005, 109, 22061.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  A. Rivera, A. Brodin, A. Pugachev, E. A. Rössler, J. Chem. Phys. 2007, 126, 114503.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  T. Endo, S. Widgeon, P. Yu, S. Sen, K. Nishikawa, Phys. Rev. B 2012, 85, 054307.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  H. Tokuda, K. Hayamizu, K. Ishii, M. A. B. H. Susan, M. Watanabe, J. Phys. Chem. B 2004, 108, 16593.
         | Crossref | GoogleScholarGoogle Scholar |