Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Electrochemical Detection of Explosive Compounds in an Ionic Liquid in Mixed Environments: Influence of Oxygen, Moisture, and Other Nitroaromatics on the Sensing Response

Junqiao Lee A and Debbie S. Silvester A B
+ Author Affiliations
- Author Affiliations

A Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.

B Corresponding author. Email: d.silvester-dean@curtin.edu.au

Australian Journal of Chemistry 72(2) 122-129 https://doi.org/10.1071/CH18396
Submitted: 9 August 2018  Accepted: 16 November 2018   Published: 7 December 2018

Abstract

From a security point of view, detecting and quantifying explosives in mixed environments is required to identify potentially concealed explosives. Electrochemistry offers a viable method to detect nitroaromatic explosive compounds owing to the presence of easily reducible nitro groups that give rise to a current signal. However, their reduction potentials can overlap with interfering species, making it difficult to distinguish particular compounds. We have therefore examined the effect of oxygen, moisture, and other nitroaromatic species on the cyclic voltammetry and square wave voltammetry of nitroaromatic compounds of a range of mixed environments, focussing on 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (DNT) as model analytes, and using the hydrophobic room-temperature ionic liquid (RTIL) [P14,6,6,6][NTf2] as the solvent. Oxygen (0–20 % vol.) minimally affected the current of the first reduction peak of TNT in [P14,6,6,6][NTf2], but significantly affects the current for DNT. The impact of water (0 to 86 % relative humidity), however, was much more dramatic – even in the hydrophobic RTIL, water significantly affected the currents of the analyte peaks for TNT and DNT, and gave rise to additional reduction features, further contributing to the current. Additionally, the voltammetry of other related di- and tri-nitro compounds (2,6-dinitrotoluene, 1,3-dinitrobenzene, 2,4,6-trinitrotoluene, 1,3,5-trinitrobenzene, and musk xylene) was also studied to understand how different substituents on the aromatic ring may affect the reduction potentials. A 50 : 50 mixture of TNT and DNT revealed that both analytes could be separately identified and quantified using square wave voltammetry. Overall, this information is useful in determining the effect of other species on the current signals of electrochemical explosive sensors, and reveals that it may be necessary to dry the aprotic RTIL electrolyte when used in humid environments.


References

[1]  J. H. Davis, Chem. Lett. 2004, 33, 1072.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  M. J. Earle, K. R. Seddon, Pure Appl. Chem. 2000, 72, 1391.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  N. V. Plechkova, K. R. Seddon, Chem. Soc. Rev. 2008, 37, 123.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  R. A. Sheldon, R. M. Lau, M. J. Sorgedrager, F. van Rantwijk, K. R. Seddon, Green Chem. 2002, 4, 147.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  F. van Rantwijk, R. A. Sheldon, Chem. Rev. 2007, 107, 2757.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  P. Wasserscheid, W. Keim, Angew. Chem. Int. Ed. 2000, 39, 3772.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  T. Welton, Chem. Rev. 1999, 99, 2071.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  J. S. Wilkes, J. Mol. Catal. A: Chem. 2004, 214, 11.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  M. Armand, F. Endres, D. MacFarlane, H. Ohno, B. Scrosati, Nat. Mater. 2009, 8, 621.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  L. E. Barrosse-Antle, A. M. Bond, R. G. Compton, A. M. O’Mahony, E. I. Rogers, D. S. Silvester, Chem. Asian J. 2010, 5, 202.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  M. C. Buzzeo, R. G. Evans, R. G. Compton, Phys. Chem. Chem. Phys. 2004, 5, 1106.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  D. S. Silvester, R. G. Compton, Z. Phys. Chem. 2006, 220, 1247.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  M. J. A. Shiddiky, A. A. J. Torriero, Biosens. Bioelectron. 2011, 26, 1775.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  N. V. Shvedene, D. V. Chernyshov, I. V. Pletnev, Russ. J. Gen. Chem. 2008, 52, 80.

[15]  D. S. Silvester, Analyst 2011, 136, 4871.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  D. S. Silvester, L. Aldous, in Electrochemical Strategies in Detection Science (Ed. D. W. M. Arrigan) 2016, pp. 341–386 (RSC: Cambridge, UK).

[17]  W. Wei, A. Ivaska, Anal. Chim. Acta 2008, 607, 126.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  Y. Tang, X. Zeng, J. Phys. Chem. C 2016, 120, 23542.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  Y. Tang, J. He, X. Gao, T. Yang, X. Zeng, Analyst 2018, 43, 4136.

[20]  L. Xiong, E. O. Barnes, R. G. Compton, Sens. Actuators B 2014, 200, 157.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  R. Toniolo, R. Bortolomeazzi, R. Svigelj, N. Dossi, I. G. Casella, D. Bragato, S. Daniele, Sens. Actuators B 2017, 240, 239.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  A. M. O’Mahony, D. S. Silvester, L. Aldous, C. Hardacre, R. G. Compton, J. Chem. Eng. Data 2008, 53, 2884.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  U. Schroder, J. D. Wadhawan, R. G. Compton, F. Marken, P. A. Z. Suarez, C. S. Consorti, R. F. de Souza, J. Dupont, New J. Chem. 2000, 24, 1009.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  J. Pichtel, Appl. Environ. Soil Sci. 2012, 2012, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  R. J. Harper, J. R. Almirall, K. G. Furton, Talanta 2005, 67, 313.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  United States Environmental Protection Agency, Technical Fact Sheet – Dinitrotoluene (DNT) January 2014, EPA 505-F-14–010.

[27]  H. A. Yu, D. A. DeTata, S. W. Lewis, D. S. Silvester, Trends Analyt. Chem. 2017, 97, 374.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  K. Bratin, P. T. Kissinger, R. C. Briner, C. S. Bruntlett, Anal. Chim. Acta 1981, 130, 295.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  C. K. Chua, M. Pumera, L. Rulíšek, J. Phys. Chem. C 2012, 116, 4243.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  M. Galik, A. M. O’Mahony, J. Wang, Electroanalysis 2011, 23, 1193.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  A. S. Mendkovich, M. A. Syroeshkin, L. V. Mikhalchenko, M. N. Mikhailov, A. I. Rusakov, V. P. Gul’tyai, Int. J. Electrochem. 2011, 2011, 346043.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  E. J. Olson, W. C. Isley, J. E. Brennan, C. J. Cramer, P. Bühlmann, J. Phys. Chem. C 2015, 119, 13088.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  J. Wang, Electroanalysis 2007, 19, 415.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  H. T. T. Vu, H. T. V. Le, Y. T. H. Pham, H. Q. Le, P. H. Pham, Bull. Korean Chem. Soc. 2016, 37, 378.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  A. D. Aguilar, E. S. Forzani, M. Leright, F. Tsow, A. Cagan, R. A. Iglesias, L. A. Nagahara, I. Amlani, R. Tsui, N. J. Tao, Nano Lett. 2010, 10, 380.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  A. J. Bandodkar, A. M. O’Mahony, J. Ramirez, I. A. Samek, S. M. Anderson, J. R. Windmiller, J. Wang, Analyst 2013, 138, 5288.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  E. S. Forzani, D. L. Lu, M. J. Leright, A. D. Aguilar, F. Tsow, R. A. Iglesias, Q. Zhang, J. Lu, J. H. Li, N. J. Tao, J. Am. Chem. Soc. 2009, 131, 1390.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  C. X. Guo, Z. S. Lu, Y. Lei, C. M. Li, Electrochem. Commun. 2010, 12, 1237.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  C. Kang, J. Lee, D. S. Silvester, J. Phys. Chem. C 2016, 120, 10997.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  J. Lee, C. Hay, D. S. Silvester, Aust. J. Chem. 2018, 71, 818.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  C. Xiao, A. Rehman, X. Zeng, Anal. Chem. 2012, 84, 1416.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  J. Lee, G. Du Plessis, D. W. M. Arrigan, D. S. Silvester, Anal. Methods 2015, 7, 7327.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  M. J. A. Shiddiky, A. A. J. Torriero, J. M. Reyna-Gonzalez, A. M. Bond, Anal. Chem. 2010, 82, 1680.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  D. S. Silvester, K. R. Ward, L. Aldous, C. Hardacre, R. G. Compton, J. Electroanal. Chem. 2008, 618, 53.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  M. Sharp, Electrochim. Acta 1983, 28, 301.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  D. S. Silvester, A. J. Wain, L. Aldous, C. Hardacre, R. G. Compton, J. Electroanal. Chem. 2006, 596, 131.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  H. A. Yu, J. Lee, S. W. Lewis, D. S. Silvester, Anal. Chem. 2017, 89, 4729.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  R. G. Evans, O. V. Klymenko, S. A. Saddoughi, C. Hardacre, R. G. Compton, J. Phys. Chem. B 2004, 108, 7878.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  M. Hayyan, M. A. Hashim, I. M. AlNashef, Chem. Rev. 2016, 116, 3029.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  P. Li, E. O. Barnes, C. Hardacre, R. G. Compton, J. Phys. Chem. C 2015, 119, 2716.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  E. J. Olson, T. T. Xiong, C. J. Cramer, P. Buhlmann, J. Am. Chem. Soc. 2011, 133, 12858.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  I. Gallardo, G. Guirado, J. Marquet, N. Vilà, Angew. Chem. Int. Ed. 2007, 46, 1321.
         | Crossref | GoogleScholarGoogle Scholar |